Skip to main content

Anti-diabetic Potentials of Red Beet Pigments and Other Constituents

  • Chapter
  • First Online:
Red Beet Biotechnology

Abstract

Diabetes mellitus is a group of metabolic disorders characterized by ­elevated sugar levels in blood, caused by defects in insulin secretion and further signaling cascades. Among the approaches to overcome diabetes, diet plays a key role in the maintenance of blood sugar level, in the hyper-glycosylation of biomolecules associated with diverse metabolisms, and in the prevention of pathologies thus associated. In this connection, a number of bioactive molecules found in fruits, vegetables, dietary constituents, and other natural sources are being continuously explored for their direct or indirect benefits in preventing and/or management diabetes. Consumption of red beet (beetroot) is associated with numerous health benefits, attributed to its wide-ranging array of bioactive molecules. The major bioactive molecules in beet are polyphenols, flavonoids, betalains, therapeutic enzymes, ascorbic acid, and dehydroascorbic acid (DHAA). Among the phenolic compounds, betalains are the major bioactive molecules, probably due to their water-soluble nature, nitrogen content, intactness during assimilation, and stability in the circulatory system. The health benefits of red beet demonstrated by in vitro and pre-clinical studies include hypoglycemic, anti-inflammatory, antiproliferative, antitumor, antimicrobial, anti-acetylcholinesterase, antimutagenic, and lipid-lowering benefits, protection from cardiovascular disease, prevention of peripheral capillary fragility, induction of phase II enzymes activity, etc. All of these pharmacological properties are said to be associated directly or indirectly with free radical-scavenging abilities of bioactive molecules, which are abundant in red beet. Extract of red beet is known to reduce glycemic value and serum lipid in diabetic animals, and similar results were found in human intervention studies. The current chapter provides an insight into the role of phytochemicals in the prevention of diabetes, with an emphasis on red beet constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adisakwattana, S., P. Jiphimai, et al. 2010. Evaluation of α-glucosidase, α-amylase and protein glycation inhibitory activities of edible plants. International Journal of Food Sciences and Nutrition 61(3): 295–305.

    Article  CAS  Google Scholar 

  • Alarcon-Aguilara, F.J., R. Roman-Ramos, et al. 1998. Study of the anti-hyperglycemic effect of plants used as antidiabetics. Journal of Ethnopharmacology 61(2): 101–109.

    Article  CAS  Google Scholar 

  • Allegra, M., L. Tesoriere, et al. 2007. Betanin inhibits the myeloperoxidase/nitrite-induced oxidation of human low-density lipoproteins. Free Radical Research 41(3): 335–341.

    Article  CAS  Google Scholar 

  • Aribal-Kocatürk, P., G. Özelçi Kavas, et al. 2007. Pretreatment effect of resveratrol on streptozotocin-induced diabetes in rats. Biological Trace Element Research 118(3): 244–249.

    Article  Google Scholar 

  • Astrup, A. 2001. Healthy lifestyles in Europe: Prevention of obesity and type II diabetes by diet and physical activity. Public Health Nutrition 4(2b): 499–515.

    Article  CAS  Google Scholar 

  • Astrup, A., L. Breum, et al. 1992. The effect and safety of an ephedrine/caffeine compound ­compared to ephedrine, caffeine and placebo in obese subjects on an energy restricted diet. A double blind trial. International journal of obesity and related metabolic disorders/journal of the International Association for the Study of Obesity 16(4): 269.

    CAS  Google Scholar 

  • Aydına, A., H. Orhanb, et al. 2001. Oxidative stress and nitric oxide related parameters in type II diabetes mellitus: Effects of glycemic control. Clinical Biochemistry 34(1): 65–70.

    Article  Google Scholar 

  • Baskaran, K., B.K. Ahamath, et al. 1990. Antidiabetic effect of a leaf extract from Gymnema sylvestre in non-insulin-dependent diabetes mellitus patients. Journal of Ethnopharmacology 30(3): 295–305.

    Article  CAS  Google Scholar 

  • Bhagwat, S., and J. Holden., et al. 2003. USDA database for the flavonoid content of selected foods.

    Google Scholar 

  • Bobek, P., Š. Galbavý, et al. 2000. The effect of red beet (Beta vulgaris var. rubra) fiber on alimentary hypercholesterolemia and chemically induced colon carcinogenesis in rats. Food/Nahrung 44(3): 184–187.

    Article  CAS  Google Scholar 

  • Bo-Linn, G.W., C.A.S. Ana, et al. 1982. Starch blockers-their effect on calorie absorption from a high-starch meal. The New England Journal of Medicine 307(23): 1413–1416.

    Article  CAS  Google Scholar 

  • Bolkent, S., R. Yanardag, et al. 2000. Effects of chard (Beta vulgaris L. var. cicla) extract on pancreatic B cells in streptozotocin-diabetic rats: A morphological and biochemical study. Journal of Ethnopharmacology 73(1–2): 251–259.

    Article  CAS  Google Scholar 

  • Bone, A.J., C.S.T. Hii, et al. 1985. Assessment of the antidiabetic activity of epicatechin in streptozotocin-diabetic and spontaneously diabetic BB/E rats. Bioscience Reports 5(3): 215–221.

    Article  CAS  Google Scholar 

  • Borchardt, R.T., and J.A. Huber. 1975. Catechol O-methyltransferase. 5. Structure-activity ­relations for inhibition by flavonoids. Journal of Medicinal Chemistry 18(1): 120–122.

    Article  CAS  Google Scholar 

  • Brownlee, I.A. 2011. The physiological roles of dietary fibre. Food Hydrocolloids 25(2): 238–250.

    Article  CAS  Google Scholar 

  • Butterweck, V., L. Semlin, et al. 2011. Comparative evaluation of two different Opuntia ficus-indica extracts for blood sugar lowering effects in rats. Phytotherapy Research 25(3): 370–375.

    Google Scholar 

  • Cao, G., E. Sofic, et al. 1996. Antioxidant capacity of tea and common vegetables. Journal of Agricultural and Food Chemistry 44(11): 3426–3431.

    Article  CAS  Google Scholar 

  • Chakravarthy, B.K., S. Gupta, et al. 1982. Functional beta cell regeneration in the islets of pancreas in alloxan induced diabetic rats by (−)-epicatechin. Life Sciences 31(24): 2693–2697.

    Article  CAS  Google Scholar 

  • Chandalia, M., A. Garg, et al. 2000. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. The New England Journal of Medicine 342(19): 1392–1398.

    Article  CAS  Google Scholar 

  • Chen, T.-H., S.-C. Chen, et al. 2005. Mechanism of the hypoglycemic effect of stevioside, a ­glycoside of Stevia rebaudiana. Planta Medica 71(2): 108–113.

    Article  CAS  Google Scholar 

  • Crellin, J.K., and J. Philpotte (eds.). 1989. A referance guide to Medicinal plants. Herbal medicine past and present. Duke: Duke University Press.

    Google Scholar 

  • de Sousa, E., L. Zanatta, et al. 2004. Hypoglycemic effect and antioxidant potential of kaempferol-3,7-O-(α)-dirhamnoside from Bauhinia forficata leaves. Journal of Natural Products 67(5): 829–832.

    Article  Google Scholar 

  • Dembinska-Kiec, A., O. Mykkänen, et al. 2008. Antioxidant phytochemicals against type 2 diabetes. British Journal of Nutrition 99(E-S1): ES109–ES117.

    Article  Google Scholar 

  • Dongowski, G. 2001. Enzymatic degradation studies of pectin and cellulose from red beets. Food/Nahrung 45(5): 324–331.

    Article  CAS  Google Scholar 

  • Edenharder, R., J. Frangart, et al. 1998. Protective effects of fruits and vegetables against in vivo clastogenicity of cyclophosphamide or benzo[a]pyrene in mice. Food and Chemical Toxicology 36(8): 637–645.

    Article  CAS  Google Scholar 

  • Feugang, J.M., P. Konarski, et al. 2006. Nutritional and medicinal use of cactus pear (Opuntia spp.) cladodes and fruits. Frontiers in Bioscience 11: 2574–2589.

    Article  CAS  Google Scholar 

  • Ford, E.S., and A.H. Mokdad. 2001. Fruit and vegetable consumption and diabetes mellitus incidence among U.S. adults. Preventive Medicine 32(1): 33–39.

    Article  CAS  Google Scholar 

  • Gandía-Herrero, F., J. Escribano, et al. 2005. Betaxanthins as pigments responsible for visible fluorescence in flowers. Planta 222(4): 586–593.

    Article  Google Scholar 

  • Georgiev, V., J. Weber, et al. 2010. Antioxidant activity and phenolic content of betalain extracts from intact plants and hairy root cultures of the red beetroot Beta vulgaris cv. detroit dark red. Plant Foods for Human Nutrition 65(2): 105–111.

    Article  CAS  Google Scholar 

  • Hertog, M.G.L., P.C.H. Hollman, et al. 1992. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. Journal of Agricultural and Food Chemistry 40(12): 2379–2383.

    Article  CAS  Google Scholar 

  • Huseini, H.F., B. Larijani, et al. 2006. The efficacy of Silybum marianum (L.) Gaertn. (silymarin) in the treatment of type II diabetes: A randomized, double-blind, placebo-controlled, clinical trial. Phytotherapy Research 20(12): 1036–1039.

    Article  CAS  Google Scholar 

  • Inoue, K., M. Kitade, et al. 2011. Screening assay of angiotensin-converting enzyme inhibitory activity from complex natural colourants and foods using high-throughput LC-MS/MS. Food Chemistry 126(4): 1909–1915.

    Article  CAS  Google Scholar 

  • Jankowski, A., B. Jankowska, et al. 2000. The effect of anthocyanin dye from grapes on experimental diabetes. Folia Medica Cracoviensia 41(3–4): 5.

    CAS  Google Scholar 

  • Jenkins, D., T. Wolever, et al. 1981. Glycemic index of foods: A physiological basis for carbohydrate exchange. American Journal of Clinical Nutrition 34(3): 362.

    CAS  Google Scholar 

  • Jeppesen, P.B., S. Gregersen, et al. 2000. Stevioside acts directly on pancreatic [beta] cells to secrete insulin: Actions independent of cyclic adenosine monophosphate and adenosine triphosphate – sensitivie K+−channel activity. Metabolism 49(2): 208–214.

    Article  CAS  Google Scholar 

  • Josef, V., Schusselbergstrasse, et al. 1973. Antidiabetic composition of beet roots and horseradish. USA: Google Patents.

    Google Scholar 

  • Kamalakkannan, N., and P.S.M. Prince. 2006. Antihyperglycaemic and antioxidant effect of Rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats. Basic & Clinical Pharmacology & Toxicology 98(1): 97–103.

    Article  CAS  Google Scholar 

  • Kapadia, G.J., H. Tokuda, et al. 1996. Chemoprevention of lung and skin cancer by Beta vulgaris (beet) root extract. Cancer Letters 100(1–2): 211–214.

    Article  CAS  Google Scholar 

  • Kapadia, G.J., M.A. Azuine, et al. 2003. Chemoprevention of DMBA-induced UV-B promoted, NOR-1-induced TPA promoted skin carcinogenesis, and DEN-induced phenobarbital promoted liver tumors in mice by extract of beetroot. Pharmacological Research 47(2): 141–148.

    Article  CAS  Google Scholar 

  • Kawada, T., T. Watanabe, et al. 1986. Capsaicin-induced beta-adrenergic action on energy metabolism in rats: Influence of capsaicin on oxygen consumption, the respiratory quotient, and substrate utilization. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York) 183(2): 250–256.

    CAS  Google Scholar 

  • Kujala, T., M. Vienola, et al. 2002. Betalain and phenolic compositions of four beetroot (Beta vulgaris) cultivars. European Food Research and Technology 214(6): 505–510.

    Article  CAS  Google Scholar 

  • Kujawska, M., E. Ignatowicz, et al. 2009. Protective effect of red beetroot against carbon Tetrachloride- and N-Nitrosodiethylamine-induced oxidative stress in rats. Journal of Agricultural and Food Chemistry 57(6): 2570–2575.

    Article  CAS  Google Scholar 

  • Lee, J.H., C.W. Son, et al. 2009. Red beet (Beta vulgaris L.) leaf supplementation improves ­antioxidant status in C57BL/6 J mice fed high fat high cholesterol diet. Nutrition Research and Practice 3(2): 114–121.

    Article  CAS  Google Scholar 

  • Liu, S., M. Serdula, et al. 2004. A prospective study of fruit and vegetable intake and the risk of type 2 diabetes in women. Diabetes Care 27(12): 2993–2996.

    Article  Google Scholar 

  • Lu, X., Y. Wang, et al. 2009. Radioprotective activity of betalains from red beets in mice exposed to gamma irradiation. European Journal of Pharmacology 615(1–3): 223–227.

    Article  CAS  Google Scholar 

  • Luo, J., J. Cheung, et al. 1999. Novel terpenoid-type quinones isolated from pycnanthus angolensis of potential utility in the treatment of type 2 diabetes. Journal of Pharmacology and Experimental Therapeutics 288(2): 529–534.

    CAS  Google Scholar 

  • Ninfali, P., M. Bacchiocca, et al. 2007. Characterization and biological activity of the main flavonoids from Swiss Chard (Beta vulgaris subspecies cycla). Phytomedicine 14(2–3): 216–221.

    Article  CAS  Google Scholar 

  • Nishioka, T., J. Kawabata, et al. 1998. Baicalein, an α-glucosidase inhibitor from Scutellaria baicalensis. Journal of Natural Products 61(11): 1413–1415.

    Article  CAS  Google Scholar 

  • Nottingham, S. 2004. Beetroot health and nutrition S. Nottingham

    Google Scholar 

  • Nyarko, A.K., H. Asare-Anane, et al. 2002. Extract of Ocimum canum lowers blood glucose and facilitates insulin release by isolated pancreatic [beta]-islet cells. Phytomedicine 9(4): 346–351.

    Article  CAS  Google Scholar 

  • Okoli, C., A. Ibiam, et al. 2010. Evaluation of antidiabetic potentials of Phyllanthus niruri in alloxan diabetic rats. African Journal of Biotechnology 9(2): 248–259.

    Google Scholar 

  • Okyar, A., A. Can, et al. 2001. Effect of Aloe vera leaves on blood glucose level in type I and type II diabetic rat models. Phytotherapy Research 15(2): 157–161.

    Article  CAS  Google Scholar 

  • Ozsoy-Sacan, O., O. Karabulut-Bulan, et al. 2004. Effects of chard (Beta vulgaris L. var cicla) on the liver of the diabetic rats: A morphological and biochemical study. Bioscience Biotechnology and Biochemistry 68(8): 1640–1648.

    Article  CAS  Google Scholar 

  • Panda, S., and A. Kar. 2007. Apigenin (4′,5,7-trihydroxyflavone) regulates hyperglycaemia, thyroid dysfunction and lipid peroxidation in alloxan-induced diabetic mice. Journal of Pharmacy and Pharmacology 59(11): 1543–1548.

    Article  Google Scholar 

  • Racotta, I.S., J. LeBlanc, et al. 1994. The effect of caffeine on food intake in rats: Involvement of corticotropin-releasing factor and the sympatho-adrenal system. Pharmacology Biochemistry and Behavior 48(4): 887–892.

    Article  CAS  Google Scholar 

  • Raghuram, T., R. Sharma, et al. 1994. Effect of fenugreek seeds on intravenous glucose disposition in non insulin dependent diabetic patients. Phytotherapy Research 8(2): 83–86.

    Article  Google Scholar 

  • Rayalam, S., M.A. Della-Fera, et al. 2008. Phytochemicals and regulation of the adipocyte life cycle. The Journal of Nutritional Biochemistry 19(11): 717–726.

    Article  CAS  Google Scholar 

  • Reddy, M.K., R.L. Alexander-Lindo, et al. 2005. Relative inhibition of lipid peroxidation, cyclooxygenase enzymes, and human tumor cell proliferation by natural food colors. Journal of Agricultural and Food Chemistry 53(23): 9268–9273.

    Article  CAS  Google Scholar 

  • Rizvi, S.I., and M.A. Zaid. 2001. Insulin-like effect of (−) Epicatechin on erythrocyte membrane acetylcholinesterase activity in type 2 diabetes mellitus. Clinical and Experimental Pharmacology and Physiology 28(9): 776–778.

    Article  CAS  Google Scholar 

  • Rizvi, S.I., M.A. Zaid, et al. 2005. Protective role of tea catechins against oxidation-induced damage of type 2 diabetic erythrocytes. Clinical and Experimental Pharmacology and Physiology 32(1–2): 70–75.

    Article  Google Scholar 

  • Roberts, M.J., and D. Strack. 1999. Biochemistry and physiology of alkaloids and betalains. Sheffield: Academic.

    Google Scholar 

  • Roman-Ramos, R., J.L. Flores-Saenz, et al. 1995. Anti-hyperglycemic effect of some edible plants. Journal of Ethnopharmacology 48(1): 25–32.

    Article  CAS  Google Scholar 

  • Sabu, M., K. Smitha, et al. 2002. Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. Journal of Ethnopharmacology 83(1–2): 109–116.

    CAS  Google Scholar 

  • Salmerón, J., A. Ascherio, et al. 1997a. Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care 20(4): 545–550.

    Article  Google Scholar 

  • Salmerón, J., J.E. Manson, et al. 1997b. Dietary fiber, glycemic load, and risk of non–insulin-dependent diabetes mellitus in women. JAMA: The Journal of the American Medical Association 277(6): 472–477.

    Article  Google Scholar 

  • Sanders, R.A., F.M. Rauscher, et al. 2001. Effects of quercetin on antioxidant defense in streptozotocin-induced diabetic rats. Journal of Biochemical and Molecular Toxicology 15(3): 143–149.

    Article  CAS  Google Scholar 

  • Sapers, G.M., and J.S. Hornstein. 1979. Varietal differences in colorant properties and stability of red beet pigments. Journal of Food Science 44(4): 1245–1248.

    Article  CAS  Google Scholar 

  • Sárdi, É., É. Stefanovits-Bányai, et al. 2009. Effect of bioactive compounds of table beet cultivars on alimentary induced fatty livers of rats. Acta Alimentaria 38(3): 267–280.

    Article  Google Scholar 

  • Sartor, G., B. Scherstén, et al. 1980. Ten-year follow-up of subjects with impaired glucose tolerance: Prevention of diabetes by tolbutamide and diet regulation. Diabetes 29(1): 41–49.

    Article  CAS  Google Scholar 

  • Sasaki, R., N. Nishimura, et al. 2007. Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice. Biochemical Pharmacology 74(11): 1619–1627.

    Article  CAS  Google Scholar 

  • Schwartz, S.J., J.H. von Elbe, et al. 1983. Inability of red beet betalain pigments to initiate or promote hepatocarcinogenesis. Food and Chemical Toxicology 21(5): 531–535.

    Article  CAS  Google Scholar 

  • Shane-McWhorter, L. 2001. Biological complementary therapies: A focus on botanical products in diabetes. Diabetes Spectrum 14(4): 199–208.

    Article  Google Scholar 

  • Shanmugasundaram, E., G. Rajeswari, et al. 1990. Use of Gymnema sylvestre leaf extract in the control of blood glucose in insulin-dependent diabetes mellitus. Journal of Ethnopharmacology 30(3): 281–294.

    Article  CAS  Google Scholar 

  • Sharma, R.D., and T.C. Raghuram. 1990. Hypoglycaemic effect of fenugreek seeds in non-insulin dependent diabetic subjects. Nutrition Research 10(7): 731–739.

    Article  Google Scholar 

  • Shetty, A.K., R. Rashmi, et al. 2004. Antidiabetic influence of quercetin in streptozotocin-induced diabetic rats. Nutrition Research 24(5): 373–381.

    Article  CAS  Google Scholar 

  • Singh, A.B., N.S. Akanksha, et al. 2009. Anti-hyperglycaemic, lipid lowering and anti-oxidant properties of [6]-gingerol in db/db mice. International Journal of Medicine and Medical Sciences 1(12): 536–544.

    CAS  Google Scholar 

  • Sivakumar, G., D.R. Vail, et al. 2009. Plant-based corosolic acid: Future anti-diabetic drug? Biotechnology Journal 4(12): 1704–1711.

    Article  CAS  Google Scholar 

  • Sotaniemi, E.A., E. Haapakoski, et al. 1995. Ginseng therapy in non-insulin-dependent diabetic patients. Diabetes Care 18(10): 1373–1375.

    Article  CAS  Google Scholar 

  • Sreekanth, D., M. Arunasree, et al. 2007. Betanin a betacyanin pigment purified from fruits of Opuntia ficus-indica induces apoptosis in human chronic myeloid leukemia Cell line-K562. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 14(11): 739.

    Article  CAS  Google Scholar 

  • Strasser, G.R., and R. Amadò. 2002. Pectic substances from red beet (Beta vulgaris L. var. conditiva). Part II. Structural characterisation of rhamnogalacturonan II. Carbohydrate Polymers 48(3): 263–269.

    Article  CAS  Google Scholar 

  • Suresh Babu, P., and K. Srinivasan. 1995. Influence of dietary curcumin and cholesterol on the progression of experimentally induced diabetes in albino rat. Molecular and Cellular Biochemistry 152(1): 13–21.

    Google Scholar 

  • Tanaka, Y., N. Sasaki, et al. 2008. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. The Plant Journal 54(4): 733–749.

    Article  CAS  Google Scholar 

  • Tang, L.-Q., W. Wei, et al. 2006. Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats. Journal of Ethnopharmacology 108(1): 109–115.

    Article  CAS  Google Scholar 

  • Váli, L., É. Stefanovits-Bányai, et al. 2007. Liver-protecting effects of table beet (Beta vulgaris var. rubra) during ischemia-reperfusion. Nutrition 23(2): 172–178.

    Article  Google Scholar 

  • Vessal, M., M. Hemmati, et al. 2003. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comparative Biochemistry and Physiology Part C, Toxicology & Pharmacology 135(3): 357–364.

    Article  Google Scholar 

  • Vincent, K.R., and R.G. Scholz. 1978. Separation and quantification of red beet betacyanins and betaxanthins by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry 26(4): 812–816.

    Article  CAS  Google Scholar 

  • Wang, L., S. Liu, et al. 2006. The consumption of lycopene and tomato-based food products is not associated with the risk of type 2 diabetes in women. The Journal of Nutrition 136(3): 620–625.

    CAS  Google Scholar 

  • Welihinda, J., E.H. Karunanayake, et al. 1986. Effect of Momordica charantia on the glucose tolerance in maturity onset diabetes. Journal of Ethnopharmacology 17(3): 277–282.

    Article  CAS  Google Scholar 

  • Wettasinghe, M., B. Bolling, et al. 2002. Phase II enzyme-inducing and antioxidant activities of beetroot (Beta vulgaris L.) extracts from phenotypes of different pigmentation. Journal of Agricultural and Food Chemistry 50(23): 6704–6709.

    Article  CAS  Google Scholar 

  • Wild, S.H., G. Roglic, et al. 2004. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 27(10): 2569.

    Article  Google Scholar 

  • Wolfram, S., D. Raederstorff, et al. 2006. Epigallocatechin gallate supplementation alleviates diabetes in rodents. Journal of Nutrition 136(10): 2512.

    CAS  Google Scholar 

  • Yadav, S., V. Vats, et al. 2002. Hypoglycemic and antihyperglycemic activity of Murraya koenigii leaves in diabetic rats. Journal of Ethnopharmacology 82(2–3): 111–116.

    Article  CAS  Google Scholar 

  • Yamashita, T., and K. Sato. 2008. Effects of beet red inhibiting experimental diabetes in vivo-studies using ALS strain mice. Foods and Food Ingedients Journal of Japan 213(2): 122.

    CAS  Google Scholar 

  • Yin, J., H. Xing, et al. 2008. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism 57(5): 712–717.

    Article  CAS  Google Scholar 

  • Yoshikawa, M., T. Murakami, et al. 1996. Medicinal foodstuff. III. Sugar beet.(1): Hypoglycemic oleanolic acid oligoglycosides, betavulgarosides I, II, III, and IV, from the root of Beta vulgaris L.(Chenopodiaceae). Chemical and Pharmaceutical Bulletin 44(6): 1212.

    Article  CAS  Google Scholar 

  • Yun, S.-Y., S.-P. Kim, et al. 2006. Effects of (−)-epigallocatechin-3-gallate on pancreatic beta-cell damage in streptozotocin-induced diabetic rats. European Journal of Pharmacology 541(1–2): 115–121.

    Article  CAS  Google Scholar 

  • Zarzuelo, A., I. Jiménez, et al. 1996. Effects of luteolin 5-O-[beta]-rutinoside in streptozotocin-induced diabetic rats. Life Sciences 58(25): 2311–2316.

    Article  CAS  Google Scholar 

  • Zohary, D., and M. Hopf. 2000. Domestication of plants in the old world: The origin and spread of cultivated plants in West Asia, Europe, and the Nile Valley. Oxford, USA: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kotamballi N. Chidambara Murthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Murthy, K.N.C., Manchali, S. (2013). Anti-diabetic Potentials of Red Beet Pigments and Other Constituents. In: Neelwarne, B. (eds) Red Beet Biotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3458-0_8

Download citation

Publish with us

Policies and ethics