Skip to main content

NIRS: Theoretical Background and Practical Aspects

  • Chapter
  • First Online:
Functional Neuroimaging in Exercise and Sport Sciences

Abstract

In this chapter, an introduction to near-infrared spectroscopy (NIRS) as a tool for brain functional monitoring and imaging is presented. The basic physical principles are outlined for the measurement of physiological parameters like cortical haemoglobin oxygenation and blood flow. The advantages of spatially resolved as well as time- and frequency-domain techniques are discussed and compared with the modified Lambert–Beer approach which is used in most topographic imaging systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alerstam E, Svensson T, Andersson-Engels S (2008) Parallel computing with graphics processing units for high speed Monte Carlo simulation of photon migration. J Biomed Opt 13:060504

    Article  Google Scholar 

  • Arridge SR (1999) Optical tomography in medical imaging. Inverse Probl 5:41–93

    Article  Google Scholar 

  • Arridge S, Cope M, Delpy DT (1992) The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis. Phys Med Biol 37:1531–1560

    Article  PubMed  CAS  Google Scholar 

  • Atsumori H, Kiguchi M, Katura T, Funane T, Obata A, Sato H, Manaka T, Iwamoto M, Maki A, Koizumi H, Kubota K (2010) Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system. J Biomed Opt 15:046002

    Article  PubMed  Google Scholar 

  • Boas DA, Chen K, Grebert D, Franceschini MA (2004) Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans. Opt Lett 29:506–1508

    Article  Google Scholar 

  • Boden S, Obrig H, Kohncke C, Benav H, Koch SP, Steinbrink J (2007) The oxygenation response to functional stimulation: is there a physiological meaning to the lag between parameters? Neuroimage 36:100–107

    Article  PubMed  CAS  Google Scholar 

  • Bonner R, Nossal R (1981) Model for laser Doppler measurements of blood flow in tissue. Appl Opt 20:2097–2107

    Article  PubMed  CAS  Google Scholar 

  • BORL (2005) http://www.ucl.ac.uk/medphys/research/borl/intro/spectra

  • Briers JD (2001) Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging. Physiol Meas 22:R35–R66

    Article  PubMed  CAS  Google Scholar 

  • Chance B, Nioka S, Kent J, McCully K, Fountain M, Greenfeld R, Holtom G (1988) Time resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle. Anal Biochem 174:698–707

    Article  PubMed  CAS  Google Scholar 

  • Chance B, Zhuang Z, UnAh C, Alter C, Lipton L (1993) Cognition-activated low-frequency modulation of light absorption in human brain. Proc Natl Acad Sci USA 90:3770–3774

    Article  PubMed  CAS  Google Scholar 

  • Chance B, Cope M, Gratton E, Ramanujam N, Tromberg B (1998) Phase measurement of light absorption and scatter in human tissues. Rev Sci Instrum 69:3457–3481

    Article  CAS  Google Scholar 

  • Cohen LB, Keynes RD, Hille B (1968) Light scattering and birefringence changes during nerve activity. Nature 218:438–441

    Article  PubMed  CAS  Google Scholar 

  • Cooper CE, Springett R (1997) Measurement of cytochrome oxidase and mitochondrial energetics by nearinfrared spectroscopy. Philos Trans R Lond B Biol Sci 352(1354):669–676

    Article  CAS  Google Scholar 

  • Delpy DT, Cope M (1997) Quantification in tissue near-infrared spectroscopy. Philos Trans R Soc Lond B Biol Sci 352(1354):649–659

    Article  CAS  Google Scholar 

  • Delpy DT, Cope M, van der Zee P, Arridge SR, Wray S, Wyatt JS (1988) Estimation of optical pathlength through tissue from direct time of flight measurements. Phys Med Biol 33:1433–1442

    Article  PubMed  CAS  Google Scholar 

  • Dunn AK, Devor A, Dale AM, Boas DA (2005) Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex. Neuroimage 27:279–290

    Article  PubMed  Google Scholar 

  • Durduran T, Yu G, Burnett MG, Detre JA, Greenberg JH, Wang J, Zhou C, Yodh AG (2004) Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation. Opt Lett 29:1766–1768

    Article  PubMed  Google Scholar 

  • Essenpreis M, Elwell CE, Cope M, van der Zee P, Arridge SR, Delpy DT (1993) Spectral dependence of temporal point spread functions in human tissues. Appl Opt 32:418–425

    Article  PubMed  CAS  Google Scholar 

  • Fantini S, Franceschini MA, Fishkin JB, Barbieri B, Gratton E (1994) Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light emitting diode based technique. Appl Opt 33:5204–5213

    Article  PubMed  CAS  Google Scholar 

  • Fishkin JB, So PT, Cerussi AE, Fantini S, Franceschini MA, Gratton E (1995) Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissue like phantom. Appl Opt 34:1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Franceschini MA, Fantini S, Thompson JH, Culver JP, Boas DA (2003) Hemodynamic evoked response of the sensorimotor cortex measured non-invasively with near-infrared optical imaging. Psychophysiology 40:548–560

    Article  PubMed  Google Scholar 

  • Gora F, Shinde S, Elwell CE, Goldstone JC, Cope M, Delpy DT, Smith M (2002) Measurement of cerebral blood flow in adults using near infrared spectroscopy and indocyanine green. J Neurosurg Anesthesiol 14:218–222

    Article  PubMed  Google Scholar 

  • Gratton G, Brumback CR, Gordon BA, Pearson MA, Low KA, Fabiani M (2006) Effects of measurement method, wavelength, and source-detector distance on the fast optical signal. Neuroimage 32:1576–1590

    Article  PubMed  Google Scholar 

  • Hebden JC, Gibson A, Yusof R, Everdell N, Hillman E, Delpy DT, Arridge S, Austin T, Meek J, Wyatt J (2002) Three-dimensional optical tomography of the premature infant brain. Phys Med Biol 47:4155–4166

    Article  PubMed  Google Scholar 

  • Hillman EM (2007) Optical brain imaging in vivo: techniques and applications from animal to man. J Biomed Opt 12:051402

    Article  PubMed  Google Scholar 

  • Hoshi Y (2003) Functional near-infrared optical imaging: utility and limitations in human brain mapping. Psychophysiology 40:511–520

    Article  PubMed  Google Scholar 

  • Hoshi Y, Tamura M (1993) Dynamic multichannel near-infrared optical imaging of human brain activity. J Appl Physiol 75:1842–1846

    PubMed  CAS  Google Scholar 

  • Jobsis F (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Kamei A, Takashima S, Ozaki T (1993) Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy. J Cereb Blood Flow Metab 13:516–520

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi H, Hayashi T, Kato T, Okada E (2004) Theoretical evaluation of accuracy in position and size of brain activity obtained by near-infrared topography. Phys Med Biol 49:2753–2765

    Article  PubMed  Google Scholar 

  • Kohl M, Watson R, Cope M (1997) Optical properties of highly scattering media from changes in attenuation and phase and modulation depths. Appl Opt 36:105–115

    Article  PubMed  CAS  Google Scholar 

  • Koizumi H, Yamamoto T, Maki A, Yamashita Y, Sato H, Kawaguchi H, Ichikawa N (2003) Optical topography: practical problems and new applications. Appl Opt 42:3054–3062

    Article  PubMed  Google Scholar 

  • Kuebler WM, Sckell A, Habler O, Kleen M, Kuhnle GEH, Welte M, Messmer K, Goetz AE (1998) Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green. J Cereb Blood Flow Metab 18:445–456

    Article  PubMed  CAS  Google Scholar 

  • Li J, Dietsche G, Iftime D, Skipetrov SE, Maret G, Elbert T, Rockstroh B, Gisler T (2005) Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy. J Biomed Opt 10:44002

    Article  Google Scholar 

  • Liebert A, Wabnitz H, Steinbrink J, Obrig H, Möller M, MacDonald R, Villringer A, Rinneberg H (2004) Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons. Appl Opt 43:3037–3047

    Article  PubMed  Google Scholar 

  • Liebert A, Wabnitz H, Steinbrink J, Moller M, Macdonald R, Rinneberg H, Villringer A, Obrig H (2005) Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance. Neuroimage 24:426–435

    Article  PubMed  CAS  Google Scholar 

  • Liebert A, Wabnitz H, Obrig H, Erdmann R, Möller M, Macdonald R, Rinneberg H, Villringer A, Steinbrink J (2006) Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain. Neuroimage 31:600–608

    Article  PubMed  CAS  Google Scholar 

  • Madsen PL, Secher NH (1999) Near-infrared oximetry of the brain. Prog Neurobiol 58:541–560

    Article  PubMed  CAS  Google Scholar 

  • Matcher SJ, Cope M, Delpy DT (1993) Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy. Phys Med Biol 38:177–196

    Google Scholar 

  • Matcher SJ, Kirkpatrick P, Nahid K, Cope M, Delpy DT (1995) Absolute quantification methods in tissue near infrared spectroscopy. Proc SPIE 2389:486–495

    Article  Google Scholar 

  • Matcher SJ, Cope M, Delpy DT (1997) In vivo measurements of the wavelength dependence of tissue scattering coefficients between 760 and 900 nm measured with time resolved spectroscopy. Appl Opt 36:386–396

    Article  PubMed  CAS  Google Scholar 

  • McGown AD, Makker H, Elwell C, Rawi PGA, Valipour A, Spiro SG (2003) Measurement of changes in cytochrome oxidase redox state during obstructive sleep apnea using near-infrared spectroscopy. Sleep 26:1–7

    Google Scholar 

  • Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida T, Kubota K (2001) Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage 14:1186–1192

    Article  PubMed  CAS  Google Scholar 

  • Obrig H, Villringer A (2003) Beyond the visible – imaging the human brain with light. J Cereb Blood Flow Metab 23:1–18

    Article  PubMed  Google Scholar 

  • Obrig H, Neufang M, Wenzel R, Kohl M, Steinbrink J, Einhaupl K, Villringer A (2000) Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults. Neuroimage 12:623–639

    Article  PubMed  CAS  Google Scholar 

  • Okada E, Firbank M, Schweiger M, Arridge SR, Cope M, Delpy DT (1997) Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head. Appl Opt 36:21–31

    Article  PubMed  CAS  Google Scholar 

  • Patterson MS, Chance B, Wilson BC (1989) Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties. Appl Opt 28:2331–2336

    Article  PubMed  CAS  Google Scholar 

  • Patterson MS, Moulton JD, Wilson BC, Berndt KW, Lakowicz JR (1991) Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue. Appl Opt 30:4474–4476

    Article  PubMed  CAS  Google Scholar 

  • Pogue BW, Patterson MS (1994) Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory. Phys Med Biol 39:1157–1180

    Article  PubMed  CAS  Google Scholar 

  • Prahl S (2001) Optical properties spectra. http://omlc.ogi.edu/spectra

  • Rector DM, Carter KM, Volegov PL, George JS (2005) Spatio-temporal mapping of rat whisker barrels with fast scattered light signals. Neuroimage 26:619–627

    Article  PubMed  Google Scholar 

  • Schmidt FEW, Fry ME, Hillman EMC, Hebden JC, Delpy DT (2000) A 32-channel time-resolved instrument for medical optical tomography. Rev Sci Instrum 71:256–265

    Article  CAS  Google Scholar 

  • Schmitz Ch, Löcker M, Lasker J, Hielsher AH, Barbour RL (2002) Instrumentation for fast functional optical tomography. Rev Sci Instrum 73:429–439

    Article  CAS  Google Scholar 

  • Steinbrink J, Wabnitz H, Obrig H, Villringer A, Rinneberg H (2001) Determining changes in NIR absorption using a layered model of the human head. Phys Med Biol 46:879–896

    Article  PubMed  CAS  Google Scholar 

  • Steinbrink J, Kempf FC, Villringer A, Obrig H (2005) The fast optical signal – robust or elusive when noninvasively measured in the human adult? Neuroimage 26:996–1008

    Article  PubMed  Google Scholar 

  • Suzuki S, Takasaki S, Ozaki T, Kobayashi Y (1999) A tissue Oxygenation monitor using NIR spatially resolved spectroscopy. Proc SPIE 3597:582–592

    Article  CAS  Google Scholar 

  • Suzuki M, Miyai I, Ono T, Kubota K (2008) Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study. Neuroimage 39:600–607

    Article  PubMed  Google Scholar 

  • Torricelli A, Pifferi A, Taroni P, Giambattistelli E, Cubeddu R (2001) In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance Spectroscopy. Phys Med Biol 46:2227–2237

    Article  PubMed  CAS  Google Scholar 

  • Tromberg BJ, Svaasand LO, Tsay T-T, Haskell RC (1993) Properties of photon density waves in multiple-scattering media. Appl Opt 32:607–616

    Article  PubMed  CAS  Google Scholar 

  • Villringer A, Chance B (1997) Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci 20:435–442

    Article  PubMed  CAS  Google Scholar 

  • Villringer A, Planck J, Hock C, Schleinkofer L, Dirnagl U (1993) Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci Lett 154:101–104

    Article  PubMed  CAS  Google Scholar 

  • Wang L-H, Jacques SL, Zheng L-Q (1995) MCML – Monte Carlo modeling of photon transport in multi-layered tissues. Comput Methods Prog Biomed 47:131–146

    Article  CAS  Google Scholar 

  • Wolf M, Ferrari M, Quaresima V (2007) Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. J Biomed Opt 12(062104):1–14

    Google Scholar 

  • Wray S, Cope M, Delpy DT, Wyatt JS, Reynolds EO (1988) Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. Biochim Biophys Acta 933:184–192

    Article  PubMed  CAS  Google Scholar 

  • Yamashita Y, Maki A, Koizumi H (1996) Near-infra-red topographic measurement system: imaging of absorbers localized in a scattering medium. Rev Sci Instrum 67:730–732

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Kohl-Bareis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kohl-Bareis, M. (2012). NIRS: Theoretical Background and Practical Aspects. In: Boecker, H., Hillman, C., Scheef, L., Strüder, H. (eds) Functional Neuroimaging in Exercise and Sport Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3293-7_10

Download citation

Publish with us

Policies and ethics