Skip to main content

Physics of Multiphase Microflows and Microdroplets

  • Chapter
  • First Online:
Microdroplet Technology

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 1981 Accesses

Abstract

Multiphase microfluidic applications are very broad, ranging from DNA analysis such as PCR in droplets to chemical synthesis [20]. Optimal design and operation of such systems need insightful understanding of fundamental multiphase flow physics at microscale. In this chapter, we discuss some basic flow physics of multiphase microdroplets. The important dimensionless parameters relating to droplet dynamics are elaborated. We use droplet generation processes as examples to explain rich flow physics involved in microdroplet dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson DM, McFadden GB (1998) Diffuse-interface methods in fluid mechanics. Annu Rev Fluid Mech 30:139–165

    Article  Google Scholar 

  2. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364–366

    Article  CAS  Google Scholar 

  3. Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modelling surface tension. J Comput Phys 100(2):335–354

    Article  CAS  Google Scholar 

  4. Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28(2):258–267

    Article  CAS  Google Scholar 

  5. Christopher GF, Noharuddin NN, Taylor JA, Anna SL (2008) Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Phys Rev E 78:036317

    Article  Google Scholar 

  6. Cubaud T, Tatineni M, Zhong X, Ho C-M (2005) Bubble dispenser in microfluidic devices. Phys Rev E 72:037302

    Article  Google Scholar 

  7. De Menech M, Garstecki P, Jousse F, Stone HA (2008) Transition from squeezing to dripping in a microfluidic T-shaped junction. J Fluid Mech 595:141–161

    Google Scholar 

  8. England P, Liu HH, Zhang YH, Mohr S, Goddard N, Fielden P, Wang CH (2010) Experimental study of droplet formation at microfluidic T-junctions. In: Proceedings of the second European conference on microfluidics—microfluidics 2010, Toulouse, 8–10 Dec 2010, paper No. 187

    Google Scholar 

  9. Enright D, Marschner S, Fedkiw R (2002) Animation and rendering of complex water surfaces. ACM Trans Graph 21(3):736–744

    Article  Google Scholar 

  10. Enright D, Losasso F, Fedkiw R (2005) A fast and accurate semi-lagrangian particle level set method. Comput Struct 83(6–7):479–490

    Article  Google Scholar 

  11. Franklin B, Brownrigg W, Farish J (1774) Of the stilling of waves by means of oil. Philos Tans Roy Soc Lond 64:445–460

    Google Scholar 

  12. Fu T, Ma Y, Funfschilling D, Li HZ (2009) Bubble formation and breakup mechanism in a microfluidic flow-focusing device. Chem Eng Sci 64(10):2392–2400

    Article  CAS  Google Scholar 

  13. Garstecki P, Stone HA, Whitesides GM (2005) Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions. Phys Rev Lett 94:164501

    Article  Google Scholar 

  14. Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction–scaling and mechanism of break-up. Lab Chip 6:437–446

    Article  CAS  Google Scholar 

  15. Gueyffier D, Li J, Nadim A, Scardovelli R, Zaleski S (1999) Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J Comput Phys 152(2):423–456

    Article  CAS  Google Scholar 

  16. Guillot P, Colin A (2005) Stability of parallel flows in a micro channel after a T junction. Phys Rev E 72:066301

    Article  Google Scholar 

  17. Hirt C, Nichols B (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225

    Article  Google Scholar 

  18. Hua J, Zhang B, Lou J (2007) Numerical simulation of microdroplet formation in coflowing immiscible liquids. AIChE J 53:2534–2548

    Article  CAS  Google Scholar 

  19. Huebner A, Sharma S, Srisa-Art M, Hollfelder F, Edel JB, De Mello AJ (2008) Microdroplets: a sea of applications? Lab Chip 8:1244–1254

    Article  CAS  Google Scholar 

  20. Jacqmin D (1999) Calculation of two-phase Navier-Stokes flows using phase-field modeling. J Comput Phys 155:96–127

    Article  Google Scholar 

  21. Liu C, Shen J (2003) A phase field model for the mixture of two incompressible fluids and its approximation by a fourier-spectral method. Physica D 179(3–4):211–228

    Article  Google Scholar 

  22. Liu HH, Zhang YH (2009) Droplet formation in a T-shaped microfluidic junction. J Appl Phys 106:034906

    Article  Google Scholar 

  23. Liu HH, Zhang YH (2011) The mechanism of droplet formation in the squeezing regime in microfluidic cross-junction. Phys Fluids 23:082101

    Article  Google Scholar 

  24. Nisisako T, Torii T, Higuchi T (2002) Droplet formation in a microchannel network. Lab Chip 2:24–26

    Article  CAS  Google Scholar 

  25. Nisisako T, Torii T, Higuchi T (2004) Novel microreactors for functional polymer beads. Chem Eng J 101:23–29

    Google Scholar 

  26. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J Comput Phys 79(1):12–49

    Article  Google Scholar 

  27. Steegmans M, Schron C, Boom R (2009) Generalised insights in droplet formation at T-junctions through statistical analysis. Chem Eng Sci 64(13):3042–3050

    Article  CAS  Google Scholar 

  28. Sugiura S, Nakajima M, Seki M (2004) Prediction of droplet diameter for microchannel emulsification: prediction model for complicated microchannel geometries. Ind Eng Chem Res 43:8233–8238

    Article  CAS  Google Scholar 

  29. Sussman M, Fatemi E (1999) An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow. SIAM J Sci Comput 20(4):1165–1191

    Article  Google Scholar 

  30. Tan J, Xu J, Li S, Luo G (2008) Drop dispenser in a cross-junction microfluidic device: scaling and mechanism of break-up. Chem Eng J 136:306–311

    Article  CAS  Google Scholar 

  31. Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163–4166

    Article  CAS  Google Scholar 

  32. Tice JD, Song H, Lyon AD, Ismagilov RF (2003) Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the Capillary numbers. Langmuir 19:9127–9133

    Article  CAS  Google Scholar 

  33. Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, Han J, Nas S, Jan Y-J (2001) A front-tracking method for the computations of multiphase flow. J Comput Phys 169(2):708–759

    Article  CAS  Google Scholar 

  34. Umbanhowar PB, Prasad V, Weitz DA (2000) Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir 16:347–351

    Article  CAS  Google Scholar 

  35. Unverdi SO, Tryggvason G (1992) A front tracking method for viscous incompressible flows. J Comput Phys 100:25–37

    Article  Google Scholar 

  36. van der Graaf T, Steegmans, MLJ, van der Sman RGM, Schroën CGPH, Boom RM (2005) Droplet formation in a T-shaped microchannel junction: a model system for membrane emulsification. Colloids Surf. A 266:106–116

    Google Scholar 

  37. van der Graaf T, Nisisako CGPH, Schroën RGM, van der Sman RM (2006) Boom, Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel. Langmuir 22:4144–4152

    Article  Google Scholar 

  38. Xu J, Li S, Tan J, Luo G (2008) Correlations of droplet formation in T junction microfluidic devices: from squeezing to dripping. Micro fluid Nanofluid 5:711–717

    Article  CAS  Google Scholar 

  39. Yabe T, Xiao F (1995) Description of complex and sharp interface with fixed grids incompressible and compressible fluid. Computers Math Applic 29(1):15–25

    Article  Google Scholar 

  40. Yasuno M, Sugiura S, Iwamoto S, Nakajima M, Shono A, Satoh K (2004) Monodispersed microbubble formation using microchannel technique. AIChE J 50:3227–3233

    Article  CAS  Google Scholar 

  41. Zhang YH (2011) Dynamics of droplets in microfluidic devices. Bubble Tech to Bio App-Lab-on-a-Chip, October 17–18, KIST Europe, Saarbrucken, Germany

    Google Scholar 

  42. Zheng B, Tice JD, Roach LS, Ismagilov RF (2004) A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip x-ray diffraction. Angew Chem Int Ed 43:2508–2511

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhang, Y., Liu, H. (2012). Physics of Multiphase Microflows and Microdroplets. In: Day, P., Manz, A., Zhang, Y. (eds) Microdroplet Technology. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3265-4_1

Download citation

Publish with us

Policies and ethics