Skip to main content

Constrained Freeway Traffic Control via Linear Parameter Varying Paradigms

  • Chapter
  • First Online:
Control of Linear Parameter Varying Systems with Applications

Abstract

A novel freeway traffic control design framework is proposed in the chapter. The derivation is based on the parameter-dependent reformulation of the second-order macroscopic freeway model. Hard physical constraints are handled implicitly, by introducing additional scheduling parameter for controller saturation measure. The ramp metering problem is then formulated as an induced \({\mathcal{L}}_{2}\) norm minimization, where the effects of undesired traffic phenomena are attenuated on the network throughput. The solution of the resulting problem involves convex optimization methods subjected to Linear Matrix Inequalities. A numerical example is given to validate the parameter-dependent controller and evaluate its effectiveness under various traffic situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In contrast to individual user based optimum.

  2. 2.

    For ease notations.

  3. 3.

    E w selects the unmeasured part of the generalized disturbance d(k).

  4. 4.

    That is where the acronym ALINEA originates from.

References

  1. Apkarian P, Gahinet P (1995) A convex characterization of gain-scheduled \({\mathcal{H}}_{\infty }\) controllers. IEEE Trans Automat Contr 40(5):853–864

    Article  MathSciNet  MATH  Google Scholar 

  2. Apkarian P, Gahinet P, Becker G (1995) Self-scheduled \({\mathcal{H}}_{\infty }\) control of linear parameter-varying systems: a design example. Automatica 31(9):1251–1261

    Article  MathSciNet  MATH  Google Scholar 

  3. Baranyi P (2004) TP model transformation as a way to LMI based controller design. IEEE Trans Ind Electron 51(2):387–400

    Article  Google Scholar 

  4. Becker G, Packard A (1994) Robust performance of linear parametrically varying systems using parametrically dependent linear feedback. Syst Contr Lett 23(3): 205–215

    Article  MathSciNet  MATH  Google Scholar 

  5. Bellemans T, De Schutter B, De Moor B (2003) Anticipative model predictive control for ramp metering in freeway networks. Proc Am Contr Conf Denver Colorado, 4070–4082

    Google Scholar 

  6. Hegyi A, De Schutter B, Hellendoorn H (2005) Model predictive control for optimal coordination of ramp metering and variable speed limits. Transport Res C 13(3):185–209

    Article  Google Scholar 

  7. Jacquet D, Jaglin J, Koenig D, De Wit CC (2006) Non-local feedback ramp metering controller design. In: Proceedings of the 11th IFAC Symposium on Control in Transportation Systems, CTS

    Google Scholar 

  8. Kachroo P, Özbay K (2004) Feedback ramp metering in intelligent transportation systems. Kluwer Academic, New York

    Book  Google Scholar 

  9. Kotsialos A, Papageorgiou M (2004) Nonlinear optimal control applied to coordinated ramp metering. IEEE Trans Contr Syst Tech 12(6):920–933

    Article  Google Scholar 

  10. Lighthill MJ, Whitham GB (1955) On kinematic waves II. A theory of traffic flow on long crowded roads. Proc Roy Soc Lond Ser A Math Phys Sci 229:317–345

    MathSciNet  MATH  Google Scholar 

  11. Luspay T, Kulcsár B, Varga I, Bokor J (2010) Parameter-dependent modeling of freeway traffic flow. Transport Res C 18(4):471–488

    Article  Google Scholar 

  12. Luspay T, Kulcsár B, van Wingerden J-W, Verhaegen M, Bokor J (2011) Linear parameter varying identification of freeway traffic models. IEEE Trans Contr Syst Tech 19(1):31–45

    Article  Google Scholar 

  13. Masher DP, Ross DW, Wong PJ, Tuan PL, Zeidler PL, Peracek S (1975) Guidelines for design and operating of ramp control systems. SRI, Menid Park, CA, Standford Res. Inst. Rep. NCHRP 3-22, SRI Project 3340

    Google Scholar 

  14. Papageorgiou M (1998) Some remarks on macroscopic traffic flow modeling. Transport Res A 32(5):323–329

    Google Scholar 

  15. Papageorgiou M (2002) Freeway ramp metering: an overview. IEEE Trans Intell Transport Syst 3(4):271–281

    Article  Google Scholar 

  16. Papageorgiou M, Blosseville JM, Hadj-Salem H (1990) Modelling and real-time control of traffic flow on the southern part of Boulevard Priphrique in Paris: Part I: Modelling, Part II. Coordinated on-ramp metering. Transport Res A 24(5):345–370

    Google Scholar 

  17. Papageorgiou M, Hadj-Salem H, Middelham F (1998) ALINEA local ramp metering - summary of field result. Transport Res Rec 1603:90–98

    Article  Google Scholar 

  18. Payne HJ (1971) Models of freeway traffic and control. Simulat Counc Proc Ser Math Model Publ Syst 1(1):51–61

    Google Scholar 

  19. Scherer C, Weiland S (2005) Linear matrix inequalities in control. Lecture notes DISC

    Google Scholar 

  20. Shamma J, Athans M (1991) Guaranteed properties of gain scheduled control of linear parameter-varying plants. Automatica 27(3):559–564

    Article  MathSciNet  MATH  Google Scholar 

  21. Wattleworth JA (1965) Peak-period analysis and control of freeway system. Highway Res Rec 157:1–21

    Google Scholar 

  22. Whitham GB (1974) Linear and nonlinear waves. John Wiley, NY

    MATH  Google Scholar 

  23. Wu F (1995) Control of linear parameter varying systems. PhD dissertation, University of California at Berkeley

    Google Scholar 

  24. Wu F, Grigoriadis KM, Packard A (2000) Anti-windup controller design using linear parameter-varying control methods. Int J Contr 73(12):1104–1114

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhou K, Doyle JC, Glover K (1996) Robust and optimal control, Prentice Hall, Englewood Cliffs, New Jersey

    MATH  Google Scholar 

Download references

Acknowledgments

This work is connected to the scientific program of the “Development of quality-oriented and harmonized R + D + I strategy and functional model at BME” project. The authors gratefully acknowledge to the support by the New Széchenyi Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002) and by the Hungarian scientific research fund (OTKA) through grant No. CNK 78168. This work has been partially supported by Chalmers’ new initiatives in Transportation, therefore B. Kulcsár acknowledges the support of the Area of Advance in Transportation and Aeje.

The authors would like to address special thanks to the head of Systems and Control Research Group, Professor József Bokor for his unique support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kulcsár .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Luspay, T., Péni, T., Kulcsár, B. (2012). Constrained Freeway Traffic Control via Linear Parameter Varying Paradigms. In: Mohammadpour, J., Scherer, C. (eds) Control of Linear Parameter Varying Systems with Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1833-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1833-7_18

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-1832-0

  • Online ISBN: 978-1-4614-1833-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics