Skip to main content

Modeling and Control of LPV Systems: A Vibroacoustic Application

  • Chapter
  • First Online:
Control of Linear Parameter Varying Systems with Applications

Abstract

This chapter presents recent advances in both modeling and control of linear parameter-varying (LPV) systems. The proposed modeling technique follows the state-space model interpolation of local estimates (SMILE) approach which is based on the interpolation of a set of linear time invariant (LTI) models that are estimated for different fixed operating conditions and yields a state-space LPV model with a polytopic dependency on the scheduling parameter. The proposed control design technique considers a priori known bounds on the rate of parameter variation and can be used to compute stabilizing gain-scheduled state feedback as well as dynamic output feedback controllers for discrete-time LPV systems through linear matrix inequalities (LMIs). As extensions, H , \({\mathcal{H}}_{2}\), and suboptimal multiobjective control design problems can be conveniently solved. The presented techniques are applied to a vibroacoustic setup whose dynamics is highly sensitive to variations of the temperature. The numerical results show the advantages and versatility of the proposed approaches on a realistic engineering problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the modeling of the uncertainty domain, \(\alpha\in{\mathbb{R}}^{N}\) and \(\Delta \alpha\in{\mathbb{R}}^{N}\) represent column vectors, that is, \(\alpha\in\mathbb{R}N\times 1\) and \(\Delta \alpha\in\mathbb{R}N\times 1\). Likewise, \((\alpha,\Delta \alpha )\) is a column vector \((\alpha,\Delta \alpha ) \in\mathbb{R}2N\times 1\). For reasons of compactness, this is not explicitly mentioned throughout the remainder of the text.

References

  1. Daafouz J, Bernussou J (2001) Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties. Syst Control Lett 43(5):355–359

    Article  MathSciNet  MATH  Google Scholar 

  2. De Caigny J, Camino JF, Swevers J (2009) Interpolating model identification for SISO linear parameter-varying systems. Mech Syst Signal Process 23(8):2395–2417

    Article  Google Scholar 

  3. De Caigny J, Camino JF, Oliveira RCLF, Peres PLD, Swevers J (2010) Gain-scheduled \({\mathcal{H}}_{2}\) and \({\mathcal{H}}_{\infty }\)-control of discrete-time polytopic time-varying systems. IET Control Theory Appl 4(3):362–380

    Article  MathSciNet  Google Scholar 

  4. De Caigny J, Camino JF, Oliveira RCLF, Peres PLD, Swevers J (2011a) Gain-scheduled dynamic output feedback for discrete-time LPV systems. Int J Robust Nonlinear Control. doi: 10.1002/rnc.1711

    Google Scholar 

  5. De Caigny J, Camino JF, Swevers J (2011b) Interpolation-based modelling of MIMO LPV systems. IEEE Trans Control Syst Technol 19(1):46–63

    Article  Google Scholar 

  6. de Oliveira MC, Geromel JC, Bernussou J (2002) Extended \({\mathcal{H}}_{2}\) and \({\mathcal{H}}_{\infty }\) norm characterizations and controller parameterizations for discrete-time systems. Int J Control 75(9):666–679

    Article  MATH  Google Scholar 

  7. Ljung L (1999) System identification: Theory for the user. Prentice-Hall, Upper Saddle River, NJ, USA

    Google Scholar 

  8. Löfberg J (2004) Yalmip : a toolbox for modeling and optimization in matlab . In: Proceedings of the 2004 IEEE international symposium on computer aided control systems design, Taipei, Taiwan. URL http://control.ee.ethz.ch/~joloef/yalmip.php

  9. Masubuchi I, Ohara A, Suda N (1998) LMI-based controller synthesis: a unified formulation and solution. Int J Robust Nonlinear Contr 8(8):669–686

    Article  MathSciNet  MATH  Google Scholar 

  10. Oliveira RCLF, Bliman PA, Peres PLD (2008) Robust LMIs with parameters in multi-simplex: Existence of solutions and applications. In: Proceedings of the 47th IEEE conference on decision and control, Cancun, Mexico, pp 2226–2231

    Google Scholar 

  11. Oliveira RCLF, Peres PLD (2009) Time-varying discrete-time linear systems with bounded rates of variation: Stability analysis and control design. Automatica 45(11):2620–2626

    Article  MATH  Google Scholar 

  12. Pintelon R, Schoukens J (2001) System identification: A frequency domain approach. Institute of Electrical and Electronics Engineers, Inc., New York

    Book  Google Scholar 

  13. Ramos DCW, Peres PLD (2001) A less conservative LMI condition for the robust stability of discrete-time uncertain systems. Syst Control Lett 43(5):371–378

    Article  MathSciNet  MATH  Google Scholar 

  14. Scherer CW (2005) Relaxations for robust linear matrix inequality problems with verifications for exactness. SIAM J Matrix Anal Appl 27(2):365–395

    Article  MathSciNet  MATH  Google Scholar 

  15. Scherer CW, Gahinet P, Chilali M (1997) Multiobjective output-feedback control via LMI optimization. IEEE Trans Automat Contr 42(7):896–911

    Article  MathSciNet  MATH  Google Scholar 

  16. de Souza CE, Barbosa KA, Trofino A (2006) Robust \({\mathcal{H}}_{\infty }\) filtering for discrete-time linear systems with uncertain time-varying parameters. IEEE Trans Signal Process 54(6):2110–2118

    Article  Google Scholar 

  17. Sturm JF (1999) Using sedumi 1.02 , A matlab toolbox for optimization over symmetric cones. Optim Methods Softw 11(1):625–653

    Google Scholar 

  18. Donadon LV, Siviero DA, Camino JF, Arruda JRF (2006) Comparing a filtered-X LMS and an \({\mathcal{H}}_{2}\) controller for the attenuation of the sound radiated by a panel. Proc. Int. Conf. Noise Vibr. Engin., pp 199–210

    Google Scholar 

Download references

Acknowledgements

The authors J.F. Camino, R.C.L.F. Oliveira and P.L.D. Peres are partially supported by the Brazilian agencies CAPES, CNPq and FAPESP. The authors J. De Caigny and J. Swevers are supported by the following funding: project G.0002.11 of the Research Foundation-Flanders (FWO-Vlaanderen), K.U.Leuven-BOF PFV/10/002 Center-of-Excellence Optimization in Engineering (OPTEC) and the Belgian Programme on Interuniversity Attraction Poles, initiated by the Belgian Federal Science Policy Office. The scientific responsibility rests with its author(s).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro L. D. Peres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

De Caigny, J., Camino, J.F., Oliveira, R.C.L.F., Peres, P.L.D., Swevers, J. (2012). Modeling and Control of LPV Systems: A Vibroacoustic Application. In: Mohammadpour, J., Scherer, C. (eds) Control of Linear Parameter Varying Systems with Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1833-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1833-7_14

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-1832-0

  • Online ISBN: 978-1-4614-1833-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics