Skip to main content

Microdialysis and Microfiltration: Technology and Cerebral Applications for Energy Substrates

  • Chapter
  • First Online:
Neural Metabolism In Vivo

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 4))

Abstract

This chapter is divided into four parts.

  1. 1.

    Sampling methods, detection technologies and quantitative aspects of monitoring cerebral energy substrates in living brain, mainly glucose and lactate, are reviewed, including microdialysis, microfiltration and biosensors. Advances in the field, including metaquant sampling, in situ microsensors, as well as choice of hollow fiber materials for microdialysis and microfiltration are discussed.

  2. 2.

    Experimental and clinical applications of cerebral microdialysis of glucose and lactate are reviewed. Effects of drugs, physiological stimuli and pathological conditions (e.g. hypoxia, ischemia, head or spinal cord trauma) are discussed. For clinical monitoring in neurointensive care low time resolution microdialysis at 0.5–1 min intervals and on-line detection by a biosensor assay may provide immediate information on the metabolic consequences of therapeutic interventions during surgery.

  3. 3.

    The significance of intracerebral trafficking of glucose and lactate in the interstitial space is reviewed and addressed in some detail in an experimental study. In this study ultraslow microdilaysis and reverse dialysis of exogenous glucose or lactate is used to assess the relative glucose and lactate turnover at steady state. It is concluded that only about 12% of the brain’s energy substrates traffick through this compartment.

  4. 4.

    Finally, an attempt is made to link our current knowledge of brain energy metabolism to physiological events in the brain. In this context we discuss the concepts of metabolic and potential brain energy. Potential brain energy, defined as the large ionic gradients over neuronal membranes and storage of glutamate and GABA in synaptic vesicles, is considered a necessary condition for fast neuronal processing, whereas metabolic brain energy (i.e. consumption of glucose and oxygen) serves to restore high levels of potential energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abel P, Muller A, Fischer U (1984) Experience with an implantable glucose sensor as a prerequisite of an artificial beta cell. Biomed Biochim Acta 43(5):577–584

    PubMed  CAS  Google Scholar 

  • Abi-Saab WM, Maggs DG, Jones T, Jacob R, Srihari V, Thompson J, Kerr D, Leone P, Krystal JH, Spencer DD, During MJ, Sherwin RS (2002) Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia. J Cereb Blood Flow Metab 22(3):271–279

    PubMed  CAS  Google Scholar 

  • Allen NJ, Karadottir R, Attwell D (2005) A preferential role for glycolysis in preventing the anoxic depolarization of rat hippocampal area CA1 pyramidal cells. J Neurosci 25(4):848–859

    PubMed  CAS  Google Scholar 

  • Alves OL, Bullock R, Clausen T, Reinert M, Reeves TM (2005) Concurrent monitoring of cerebral electrophysiology and metabolism after traumatic brain injury: an experimental and clinical study. J Neurotrauma 22(7):733–749

    PubMed  Google Scholar 

  • Ames A III (2000) CNS energy metabolism as related to function. Brain Res Brain Res Rev 34(1–2):42–68

    PubMed  CAS  Google Scholar 

  • Ances BM (2004) Coupling of changes in cerebral blood flow with neural activity: what must initially dip must come back up. J Cereb Blood Flow Metab 24(1):1–6

    PubMed  Google Scholar 

  • Ao X, Stenken JA (2006) Microdialysis sampling of cytokines. Methods 38(4):331–341

    PubMed  CAS  Google Scholar 

  • Armour JC, Lucisano JY, McKean BD, Gough DA (1990) Application of chronic intravascular blood glucose sensor in dogs. Diabetes 39(12):1519–1526

    PubMed  CAS  Google Scholar 

  • Attwell D, Gibb A (2005) Neuroenergetics and the kinetic design of excitatory synapses. Nat Rev Neurosci 6(11):841–849

    PubMed  CAS  Google Scholar 

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cerebral Blood Flow Metab: Official J Int Soc Cerebral Blood Flow Metab 21(10): 1133–1145

    CAS  Google Scholar 

  • Aubert A, Costalat R, Magistretti PJ, Pellerin L (2005) Brain lactate kinetics: modeling evidence for neuronal lactate uptake upon activation. Proc Natl Acad Sci USA 102(45):16448–16453

    PubMed  CAS  Google Scholar 

  • Barbelivien A, Bertrand N, Besret L, Beley A, MacKenzie ET, Dauphin F (1999) Neurochemical stimulation of the rat substantia innominata increases cerebral blood flow (but not glucose use) through the parallel activation of cholinergic and non-cholinergic pathways. Brain Res 840(1–2):115–124

    PubMed  CAS  Google Scholar 

  • bdel-Hamid I, Atanasov P, Atanasov P, Wilkins E (1995) Development of a needle-type biosensor for intravascular glucose monitoring. Anal Chim Acta 313(1–2):45–54

    Google Scholar 

  • Ben-Yoseph O, Boxer PA, Ross BD (1994) Oxidative stress in the central nervous system: monitoring the metabolic response using the pentose phosphate pathway. Dev Neurosci 16(5–6):328–336

    PubMed  CAS  Google Scholar 

  • Ben-Yoseph O, Boxer PA, Ross BD (1996) Noninvasive assessment of the relative roles of cerebral antioxidant enzymes by quantitation of pentose phosphate pathway activity. Neurochem Res 21(9):1005–1012

    PubMed  CAS  Google Scholar 

  • Benveniste H, Diemer NH (1987) Cellular reactions to implantation of a microdialysis tube in the rat hippocampus. Acta Neuropathol (Berl) 74(3):234–238

    CAS  Google Scholar 

  • Benveniste H, Huttemeier PC (1990) Microdialysis–theory and application. Prog Neurobiol 35(3):195–215

    PubMed  CAS  Google Scholar 

  • Bergersen LH (2007) Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience 145(1):11–19

    PubMed  CAS  Google Scholar 

  • Bhatia R, Hashemi P, Razzaq A, Parkin MC, Hopwood SE, Boutelle MG, Strong AJ (2006) Application of rapid-sampling, online microdialysis to the monitoring of brain metabolism during aneurysm surgery. Neurosurgery 584(Suppl 2):ONS-20

    Google Scholar 

  • Bidgood TL, Papich MG (2005) Plasma and interstitial fluid pharmacokinetics of enrofloxacin, its metabolite ciprofloxacin, and marbofloxacin after oral administration and a constant rate intravenous infusion in dogs. J Vet Pharmacol Ther 28(4):329–341

    PubMed  CAS  Google Scholar 

  • Bindra DS, Zhang Y, Wilson GS, Sternberg R, Thevenot DR, Moatti D, Reach G (1991) Design and in vitro studies of a needle-type glucose sensor for subcutaneous monitoring. Anal Chem 63(17):1692–1696

    PubMed  CAS  Google Scholar 

  • Brauker JH, Carr-Brendel VE, Martinson LA, Crudele J, Johnston WD, Johnson RC (1995) Neovascularization of synthetic membranes directed by membrane microarchitecture. J Biomed Mater Res 29(12):1517–1524

    PubMed  CAS  Google Scholar 

  • Buck RP, Lindner E (2001) Tracing the history of selective ion sensors. Anal Chem 73(3):88A–97A

    PubMed  CAS  Google Scholar 

  • Caesar K, Hashemi P, Douhou A, Bonvento G, Boutelle MG, Walls AB, Lauritzen M (2008) Glutamate receptor-dependent increments in lactate, glucose and oxygen metabolism evoked in rat cerebellum in vivo. J Physiol 586(5):1337–1349

    PubMed  CAS  Google Scholar 

  • Chebib M, Johnston GA (1999) The ‘ABC’ of GABA receptors: a brief review. Clin Exp Pharmacol Physiol 26(11):937–940

    PubMed  CAS  Google Scholar 

  • Chen KC (2006) Effects of tissue trauma on the characteristics of microdialysis zero-net-flux method sampling neurotransmitters. J Theor Biol 238(4):863–881

    PubMed  CAS  Google Scholar 

  • Clark H, Barbari TA, Stump K, Rao G (2000) Histologic evaluation of the inflammatory response around implanted hollow fiber membranes. J Biomed Mater Res 52(1):183–192

    PubMed  CAS  Google Scholar 

  • Clausen T, Khaldi A, Zauner A, Reinert M, Doppenberg E, Menzel M, Soukup J, Alves OL, Bullock MR (2005) Cerebral acid-base homeostasis after severe traumatic brain injury. J Neurosurg 103(4):597–607

    PubMed  Google Scholar 

  • Cremers T, Ebert B (2007) Plasma and CNS concentrations of Gaboxadol in rats following subcutaneous administration. Eur J Pharmacol 562(1–2):47–52

    PubMed  CAS  Google Scholar 

  • Darvesh AS, Gudelsky GA (2003) Activation of 5-HT2 receptors induces glycogenolysis in the rat brain. Eur J Pharmacol 464(2–3):135–140

    PubMed  CAS  Google Scholar 

  • Darvesh AS, Shankaran M, Gudelsky GA (2002) 3,4-Methylenedioxymethamphetamine produces glycogenolysis and increases the extracellular concentration of glucose in the rat brain. J Pharmacol Exp Ther 301(1):138–144

    PubMed  CAS  Google Scholar 

  • Davis JL, Salmon JH, Papich MG (2005) Pharmacokinetics and tissue fluid distribution of cephalexin in the horse after oral and i.v. administration. J Vet Pharmacol Ther 28(5):425–431

    PubMed  CAS  Google Scholar 

  • De Bruin LA, Schasfoort EM, Steffens AB, Korf J (1990) Effects of stress and exercise on rat hippocampus and striatum extracellular lactate. Am J Physiol 259(4(Pt 2)):R773–R779

    PubMed  Google Scholar 

  • Delgado JM, DeFeudis FV, Roth RH, Ryugo DK, Mitruka BM (1972) Dialytrode for long term intracerebral perfusion in awake monkeys. Arch Int Pharmacodyn Ther 198(1):9–21

    PubMed  CAS  Google Scholar 

  • Demestre M, Boutelle M, Fillenz M (1997) Stimulated release of lactate in freely moving rats is dependent on the uptake of glutamate. J Physiol 499(Pt 3):825–832

    PubMed  CAS  Google Scholar 

  • Dempsey E, Diamond D, Smyth MR, Malone MA, Rabenstein K, McShane A, McKenna M, Keaveny TV, Freaney R (1997) In vitro optimisation of a microdialysis system with potential for on-line monitoring of lactate and glucose in biological samples. Analyst 122(2):185–189

    PubMed  CAS  Google Scholar 

  • Dong Y, Wang L, Shangguan D, Yu X, Zhao R, Han H, Liu G (2003) Analysis of glucose and lactate in hippocampal dialysates of rats during the operant conditioned reflex using microdialysis. Neurochem Int 43(1):67–72

    PubMed  CAS  Google Scholar 

  • Dringen R, Wiesinger H, Hamprecht B (1993) Uptake of L-lactate by cultured rat brain neurons. Neurosci Lett 163(1):5–7

    PubMed  CAS  Google Scholar 

  • Duckrow RB, Bryan RM Jr (1987) Regional cerebral glucose utilization during hyperglycemia. J Neurochem 48(3):989–993

    PubMed  CAS  Google Scholar 

  • Duelli R, Maurer MH, Staudt R, Heiland S, Duembgen L, Kuschinsky W (2000) Increased cerebral glucose utilization and decreased glucose transporter Glut1 during chronic hyperglycemia in rat brain. Brain Res 858(2):338–347

    PubMed  CAS  Google Scholar 

  • Ekberg NR, Wisniewski N, Brismar K, Ungerstedt U (2005) Measurement of glucose and metabolites in subcutaneous adipose tissue during hyperglycemia with microdialysis at various perfusion flow rates. Clin Chim Acta 359(1–2):53–64

    PubMed  CAS  Google Scholar 

  • Elekes O, Venema K, Postema F, Dringen R, Hamprecht B, Korf J (1996) Evidence that stress activates glial lactate formation in vivo assessed with rat hippocampus lactography. Neurosci Lett 208(1):69–72

    PubMed  CAS  Google Scholar 

  • Engstrom M, Polito A, Reinstrup P, Romner B, Ryding E, Ungerstedt U, Nordstrom CH (2005) Intracerebral microdialysis in severe brain trauma: the importance of catheter location. J Neurosurg 102(3):460–469

    PubMed  Google Scholar 

  • Fabricius M, Fuhr S, Bhatia R, Boutelle M, Hashemi P, Strong AJ, Lauritzen M (2006) Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortex. Brain 129(Pt 3):778–790

    PubMed  Google Scholar 

  • Fellows LK, Boutelle MG (1993) Rapid changes in extracellular glucose levels and blood flow in the striatum of the freely moving rat. Brain Res 604(1–2):225–231

    PubMed  CAS  Google Scholar 

  • Fellows LK, Boutelle MG, Fillenz M (1992) Extracellular brain glucose levels reflect local neuronal activity: a microdialysis study in awake, freely moving rats. J Neurochem 59(6):2141–2147

    PubMed  CAS  Google Scholar 

  • Felmy F, Neher E, Schneggenburger R (2003) The timing of phasic transmitter release is Ca2+−dependent and lacks a direct influence of presynaptic membrane potential. Proc Natl Acad Sci USA 100(25):15200–15205

    PubMed  CAS  Google Scholar 

  • Forsyth R, Fray A, Boutelle M, Fillenz M, Middleditch C, Burchell A (1996) A role for astrocytes in glucose delivery to neurons? Dev Neurosci 18(5–6):360–370

    PubMed  CAS  Google Scholar 

  • Forsyth RJ (1996) Astrocytes and the delivery of glucose from plasma to neurons. Neurochem Int 28(3):231–241

    PubMed  CAS  Google Scholar 

  • Fray AE, Boutelle M, Fillenz M (1997a) Extracellular glucose turnover in the striatum of unanaesthetized rats measured by quantitative microdialysis. J Physiol 504(Pt 3):721–726

    PubMed  CAS  Google Scholar 

  • Fray AE, Boutelle M, Fillenz M (1997b) Extracellular glucose turnover in the striatum of unanaesthetized rats measured by quantitative microdialysis. J Physiol 504(Pt 3):721–726

    PubMed  CAS  Google Scholar 

  • Fray AE, Forsyth RJ, Boutelle MG, Fillenz M (1996) The mechanisms controlling physiologically stimulated changes in rat brain glucose and lactate: a microdialysis study. J Physiol 496(Pt 1): 49–57

    PubMed  CAS  Google Scholar 

  • Freaney R, McShane A, Keaveny TV, McKenna M, Rabenstein K, Scheller FW, Pfeiffer D, Urban G, Moser I, Jobst G, Manz A, Verpoorte E, Widmer MW, Diamond D, Dempsey E, de Saez V, Smyth M (1997) Novel instrumentation for real-time monitoring using miniaturized flow systems with integrated biosensors. Ann Clin Biochem 34(Pt 3):291–302

    PubMed  Google Scholar 

  • Gajovic N, Beinyamin G, Warsinke A, Scheller FW, Heller A (2000) Operation of a miniature redox hydrogel-based pyruvate sensor in undiluted deoxygenated calf serum. Anal Chem 72(13):2963–2968

    PubMed  CAS  Google Scholar 

  • Gibbs ME, Anderson DG, Hertz L (2006) Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia 54(3):214–222

    PubMed  Google Scholar 

  • Gjedde A, Marrett S, Vafaee M (2002) Oxidative and nonoxidative metabolism of excited neurons and astrocytes. J Cereb Blood Flow Metab 22(1):1–14

    PubMed  CAS  Google Scholar 

  • Gramsbergen JB, Cumming P (2007) Serotonin mediates rapid changes of striatal glucose and lactate metabolism after systemic 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) administration in awake rats. Neurochem Int 51(1):8–15

    PubMed  CAS  Google Scholar 

  • Gramsbergen JB, Skjoth-Rasmussen J, Rasmussen C, Lambertsen KL (2004) On-line monitoring of striatum glucose and lactate in the endothelin-1 rat model of transient focal cerebral ischemia using microdialysis and flow-injection analysis with biosensors. J Neurosci Methods 140(1–2):93–101

    PubMed  CAS  Google Scholar 

  • Gray CS, Hildreth AJ, Sandercock PA, O’Connell JE, Johnston DE, Cartlidge NE, Bamford JM, James OF, Alberti KG (2007) Glucose-potassium-insulin infusions in the management of post-stroke hyperglycaemia: the UK Glucose Insulin in Stroke Trial (GIST-UK). Lancet Neurol 6(5):397–406

    PubMed  CAS  Google Scholar 

  • Groothuis DR, Ward S, Schlageter KE, Itskovich AC, Schwerin SC, Allen CV, Dills C, Levy RM (1998) Changes in blood-brain barrier permeability associated with insertion of brain cannulas and microdialysis probes. Brain Res 803(1–2):218–230

    PubMed  CAS  Google Scholar 

  • Gudelsky GA, Yamamoto BK (2007) Actions of 3,4-methylenedioxymethamphetamine (MDMA) on cerebral dopamineric, serotonergic and cholinergic neurons. Pharmacol Biochem Behav 87(4):426–433

    Google Scholar 

  • Hamrin K, Rosdahl H, Ungerstedt U, Henriksson J (2002) Microdialysis in human skeletal muscle: effects of adding a colloid to the perfusate. J Appl Physiol 92(1):385–393

    PubMed  CAS  Google Scholar 

  • Hertz L, Dienel GA (2005) Lactate transport and transporters: general principles and functional roles in brain cells. J Neurosci Res 79(1–2):11–18

    PubMed  CAS  Google Scholar 

  • Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27(2):219–249

    PubMed  CAS  Google Scholar 

  • Hillered L, Persson L, Nilsson P, Ronne-Engstrom E, Enblad P (2006) Continuous monitoring of cerebral metabolism in traumatic brain injury: a focus on cerebral microdialysis. Curr Opin Crit Care 12(2):112–118

    PubMed  Google Scholar 

  • Hillered L, Vespa PM, Hovda DA (2005) Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma 22(1):3–41

    PubMed  Google Scholar 

  • Hillman J, Aneman O, Anderson C, Sjogren F, Saberg C, Mellergard P (2005) A microdialysis technique for routine measurement of macromolecules in the injured human brain. Neurosurgery 56(6):1264–1268

    PubMed  Google Scholar 

  • Hillman J, Aneman O, Persson M, Andersson C, Dabrosin C, Mellergard P (2007) Variations in the response of interleukins in neurosurgical intensive care patients monitored using intracerebral microdialysis. J Neurosurg 106(5):820–825

    PubMed  CAS  Google Scholar 

  • Hillman J, Milos P, Yu ZQ, Sjogren F, Anderson C, Mellergard P (2006a) Intracerebral microdialysis in neurosurgical intensive care patients utilising catheters with different molecular cut-off (20 and 100 kD). Acta Neurochir (Wien) 148(3):319–324

    CAS  Google Scholar 

  • Hillman J, Milos P, Yu ZQ, Sjogren F, Anderson C, Mellergard P (2006b) Intracerebral microdialysis in neurosurgical intensive care patients utilising catheters with different molecular cut-off (20 and 100 kD). Acta Neurochir 148(3):319–324 (Wien

    CAS  Google Scholar 

  • Hlatky R, Valadka AB, Goodman JC, Robertson CS (2004) Evolution of brain tissue injury after evacuation of acute traumatic subdural hematomas. Neurosurgery 55(6):1318–1323

    PubMed  Google Scholar 

  • Horinaka N, Artz N, Cook M, Holmes C, Goldstein DS, Kennedy C, Sokoloff L (1997) Effects of elevated plasma epinephrine on glucose utilization and blood flow in conscious rat brain. Am J Physiol 272(4(Pt 2)):H1666–H1671

    PubMed  CAS  Google Scholar 

  • Hu Y, Wilson GS (1997a) A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J Neurochem 69(4):1484–1490

    PubMed  CAS  Google Scholar 

  • Hu Y, Wilson GS (1997b) Rapid changes in local extracellular rat brain glucose observed with an in vivo glucose sensor. J Neurochem 68(4):1745–1752

    PubMed  CAS  Google Scholar 

  • Huang C, Wang C, Kawai M, Barnes S, Elmets C (2006a) Surfactant sodium lauryl sulfate enhances skin vaccination. Molecular characterization via a novel technique using ultrafiltration capillaries and mass spectrometric proteomics. Mol Cell Proteomics 5(3):523–532

    PubMed  CAS  Google Scholar 

  • Huang CM, Ananthaswamy HN, Barnes S, Ma Y, Kawai M, Elmets CA (2006b) Mass spectrometric proteomics profiles of in vivo tumor secretomes: capillary ultrafiltration sampling of regressive tumor masses. Proteomics 6(22):6107–6116

    PubMed  CAS  Google Scholar 

  • Huang CM, Wang CC, Barnes S, Elmets CA (2006c) In vivo detection of secreted proteins from wounded skin using capillary ultrafiltration probes and mass spectrometric proteomics. Proteomics 6(21):5805–5814

    PubMed  CAS  Google Scholar 

  • Huang CM, Wang CC, Kawai M, Barnes S, Elmets CA (2006d) In vivo protein sampling using capillary ultrafiltration semi-permeable hollow fiber and protein identification via mass spectrometry-based proteomics. J Chromatogr A 1109(2):144–151

    PubMed  CAS  Google Scholar 

  • Huang YH, Bergles DE (2004) Glutamate transporters bring competition to the synapse. Curr Opin Neurobiol 14(3):346–352

    PubMed  CAS  Google Scholar 

  • Hutchinson PJ, O’Connell MT, Al-Rawi PG, Maskell LB, Kett-White R, Gupta AK, Richards HK, Hutchinson DB, Kirkpatrick PJ, Pickard JD (2000) Clinical cerebral microdialysis: a methodological study. J Neurosurg 93(1):37–43

    PubMed  CAS  Google Scholar 

  • Hutchinson PJ, O’Connell MT, Nortje J, Smith P, Al-Rawi PG, Gupta AK, Menon DK, Pickard JD (2005a) Cerebral microdialysis methodology–evaluation of 20 kDa and 100 kDa catheters. Physiol Meas 26(4):423–428

    PubMed  CAS  Google Scholar 

  • Hutchinson PJ, O’Connell MT, Nortje J, Smith P, Al-Rawi PG, Gupta AK, Menon DK, Pickard JD (2005b) Cerebral microdialysis methodology–evaluation of 20 kDa and 100 kDa catheters. Physiol Meas 26(4):423–428

    PubMed  CAS  Google Scholar 

  • Imsilp K, Whittem T, Koritz GD, Zachary JF, Schaeffer DJ (2000) Inflammatory response to intramuscular implantation of polyacrylonitrile ultrafiltration probes in sheep. Vet Res 31(6):623–634

    PubMed  CAS  Google Scholar 

  • Janle E, Cregor M, Sojka JE (2001) Interstitial fluid calcium, magnesium and phosphorus concentrations in bone, muscle and subcutaneous tissue sampled with ultrafiltration probes. Curr Sep 19(3):81–85

    CAS  Google Scholar 

  • Janle EM, Clark T, Ash SR (1992a) Use of an ultrafiltrate sampling probe to control glucose levels in a diabetic cat: case study. Curr Sep 11:3–6

    Google Scholar 

  • Janle EM, Kissinger PT (1993) Microdialysis and ultrafiltration sampling of small molecules and ions from in vivo dialysis fibers. Am Assoc Clin Chem 147:159–165

    Google Scholar 

  • Janle EM, Ostroy S, Kissinger PT (1992b) Monitoring the progress of streptozotocin diabetes in the mouse with the ultrafiltrate probe. Curr Sep 11:17–19

    Google Scholar 

  • Janle EM, Sojka JE (2000) Use of ultrafiltration probes in sheep to collect interstitial fluid for measurement of calcium and magnesium. Contemp Top Lab Anim Sci 39(6):47–50

    PubMed  CAS  Google Scholar 

  • Jones DA, Ros J, Landolt H, Fillenz M, Boutelle MG (2000) Dynamic changes in glucose and lactate in the cortex of the freely moving rat monitored using microdialysis. J Neurochem 75(4):1703–1708

    PubMed  CAS  Google Scholar 

  • Kahlert S, Reiser G (2004) Glial perspectives of metabolic states during cerebral hypoxia–calcium regulation and metabolic energy. Cell Calcium 36(3–4):295–302

    PubMed  CAS  Google Scholar 

  • Kaptein WA, Zwaagstra JJ, Venema K, Korf J (1998) Continuous ultraslow microdialysis and ultrafiltration for subcutaneous sampling as demonstrated by glucose and lactate measurements in rats. Anal Chem 70(22):4696–4700

    PubMed  CAS  Google Scholar 

  • Kennedy RT, Kauri LM, Dahlgren GM, Jung SK (2002) Metabolic oscillations in beta-cells. Diabetes 51(Suppl 1):S152–S161

    PubMed  CAS  Google Scholar 

  • Kerner A, Schlenk F, Sakowitz O, Haux D, Sarrafzadeh A (2007) Impact of hyperglycemia on neurological deficits and extracellular glucose levels in aneurysmal subarachnoid hemorrhage patients. Neurol Res 29(7):647–653

    PubMed  CAS  Google Scholar 

  • Kett-White R, Hutchinson PJ, Al-Rawi PG, Gupta AK, Pickard JD, Kirkpatrick PJ (2002) Adverse cerebral events detected after subarachnoid hemorrhage using brain oxygen and microdialysis probes. Neurosurgery 50(6):1213–1221

    PubMed  Google Scholar 

  • Khaldi A, Zauner A, Reinert M, Woodward JJ, Bullock MR (2001) Measurement of nitric oxide and brain tissue oxygen tension in patients after severe subarachnoid hemorrhage. Neurosurgery 49(1):33–38

    PubMed  CAS  Google Scholar 

  • Khan AS, Michael AC (2003) Invasive consequences of using micro-electrodes and microdialysis probes in the brain. Trends Anal Chem 22(8):503–508

    CAS  Google Scholar 

  • Kissinger C, Peters S, Zhu Y (2003) New method for automating sample collection from in vivo ultrafiltration probes. Curr Sep 20(3):97–102

    CAS  Google Scholar 

  • Klein HC, Krop-Van GW, Go KG, Korf J (1993) Prediction of specific damage or infarction from the measurement of tissue impedance following repetitive brain ischaemia in the rat. Neuropathol Appl Neurobiol 19(1):57–65

    PubMed  CAS  Google Scholar 

  • Korf J (2006) Is brain lactate metabolized immediately after neuronal activity through the oxidative pathway? J Cereb Blood Flow Metab 26(12):1584–1586

    PubMed  CAS  Google Scholar 

  • Korf J, de Boer J (1990) Lactography as an approach to monitor glucose metabolism on-line in brain and muscle. Int J Biochem 22(12):1371–1378

    PubMed  CAS  Google Scholar 

  • Korf J, Gramsbergen JB (2007) Timing of potential and metabolic brain energy. J Neurochem 103(5):1697–1708

    PubMed  CAS  Google Scholar 

  • Korf J, Klein HC, Venema K, Postema F (1988) Increases in striatal and hippocampal impedance and extracellular levels of amino acids by cardiac arrest in freely moving rats. J Neurochem 50(4):1087–1096

    PubMed  CAS  Google Scholar 

  • Korf J, Postema F (1988) Rapid shrinkage of rat striatal extracellular space after local kainate application and ischemia as recorded by impedance. J Neurosci Res 19(4):504–510

    PubMed  CAS  Google Scholar 

  • Krugers HJ, Jaarsma D, Korf J (1992) Rat hippocampal lactate efflux during electroconvulsive shock or stress is differently dependent on entorhinal cortex and adrenal integrity. J Neurochem 58(3):826–830

    PubMed  CAS  Google Scholar 

  • Kuhr WG, Korf J (1988) N-methyl-D-aspartate receptor involvement in lactate production following ischemia or convulsion in rats. Eur J Pharmacol 155(1–2):145–149

    PubMed  CAS  Google Scholar 

  • Kuhr WG, van den Berg CJ, Korf J (1988) In vivo identification and quantitative evaluation of carrier-mediated transport of lactate at the cellular level in the striatum of conscious, freely moving rats. J Cereb Blood Flow Metab 8(6):848–856

    PubMed  CAS  Google Scholar 

  • Landolt H, Langemann H, Mendelowitsch A, Gratzl O (1994) Neurochemical monitoring and on-line pH measurements using brain microdialysis in patients in intensive care. Acta Neurochir 60:475–478, Suppl (Wien

    CAS  Google Scholar 

  • Langemann H, Alessandri B, Mendelowitsch A, Feuerstein T, Landolt H, Gratzl O (2001) Extracellular levels of glucose and lactate measured by quantitative microdialysis in the human brain. Neurol Res 23(5):531–536

    PubMed  CAS  Google Scholar 

  • Leegsma-Vogt G, van der Werf S, Venema K, Korf J (2004) Modeling cerebral arteriovenous lactate kinetics after intravenous lactate infusion in the rat. J Cereb Blood Flow Metab 24(10): 1071–1080

    PubMed  CAS  Google Scholar 

  • Leegsma-Vogt G, Venema K, Korf J (2003) Evidence for a lactate pool in the rat brain that is not used as an energy supply under normoglycemic conditions. J Cereb Blood Flow Metab 23(8):933–941

    PubMed  CAS  Google Scholar 

  • Leegsma-Vogt G, Venema K, Postema F, Korf J (2001) Monitoring arterio-venous differences of glucose and lactate in the anesthetized rat with or without brain damage with ultrafiltration and biosensor technology. J Neurosci Res 66(5):795–802

    PubMed  CAS  Google Scholar 

  • Linhares MC, Kissinger PT (1992) Capillary ultrafiltration: in vivo sampling probes for small molecules. Anal Chem 64(22):2831–2835

    PubMed  CAS  Google Scholar 

  • Linhares MC, Kissinger PT (1993a) Determination of endogenous ions in intercellular fluid using capillary ultrafiltration and microdialysis probes. J Pharm Biomed Anal 11(11–12):1121–1127

    PubMed  CAS  Google Scholar 

  • Linhares MC, Kissinger PT (1993b) Pharmacokinetic monitoring in subcutaneous tissue using in vivo capillary ultrafiltration probes. Pharm Res 10(4):598–602

    PubMed  CAS  Google Scholar 

  • Liu YT, Huang CM (2007) In vivo sampling of extracellular {beta}-thymosin by ultrafiltration probes. Ann NY Acad Sci 1112:104–113

    PubMed  CAS  Google Scholar 

  • Lowry JP, Demestre M, Fillenz M (1998a) Relation between cerebral blood flow and extracellular glucose in rat striatum during mild hypoxia and hyperoxia. Dev Neurosci 20(1):52–58

    PubMed  CAS  Google Scholar 

  • Lowry JP, Miele M, O’Neill RD, Boutelle MG, Fillenz M (1998b) An amperometric glucose-oxidase/poly(o-phenylenediamine) biosensor for monitoring brain extracellular glucose: in vivo characterisation in the striatum of freely-moving rats. J Neurosci Methods 79(1):65–74

    PubMed  CAS  Google Scholar 

  • Lowry JP, O’Neill RD, Boutelle MG, Fillenz M (1998c) Continuous monitoring of extracellular glucose concentrations in the striatum of freely moving rats with an implanted glucose biosensor. J Neurochem 70(1):391–396

    PubMed  CAS  Google Scholar 

  • Lund-Andersen H (1979) Transport of glucose from blood to brain. Physiol Rev 59(2):305–352

    PubMed  CAS  Google Scholar 

  • Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297):213–215

    PubMed  CAS  Google Scholar 

  • Mayer CH, Fink H, Rex A, Voigt JP (2006) Changes in extracellular hypothalamic glucose in relation to feeding. Eur J Neurosci 24(6):1695–1701

    PubMed  CAS  Google Scholar 

  • McKenna MC, Tildon JT, Stevenson JH, Hopkins IB, Huang X, Couto R (1998) Lactate transport by cortical synaptosomes from adult rat brain: characterization of kinetics and inhibitor specificity. Dev Neurosci 20(4–5):300–309

    PubMed  CAS  Google Scholar 

  • McNay EC, Fries TM, Gold PE (2000) Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proc Natl Acad Sci USA 97(6): 2881–2885

    PubMed  CAS  Google Scholar 

  • Mintun MA, Vlassenko AG, Rundle MM, Raichle ME (2004) Increased lactate/pyruvate ratio augments blood flow in physiologically activated human brain. Proc Natl Acad Sci USA 101(2): 659–664

    PubMed  CAS  Google Scholar 

  • Moscone D, Venema K, Korf J (1996) Ultrafiltrate sampling device for continuous monitoring. Med Biol Eng Comput 34(4):290–294

    PubMed  CAS  Google Scholar 

  • Oldenziel WH, Dijkstra G, Cremers TI, Westerink BH (2006) In vivo monitoring of extracellular glutamate in the brain with a microsensor. Brain Res 1118(1):34–42

    PubMed  CAS  Google Scholar 

  • Orzi F, Lucignani G, Dow-Edwards D, Namba H, Nehlig A, Patlak CS, Pettigrew K, Schuier F, Sokoloff L (1988) Local cerebral glucose utilization in controlled graded levels of hyperglycemia in the conscious rat. J Cereb Blood Flow Metab 8(3):346–356

    PubMed  CAS  Google Scholar 

  • Oz G, Seaquist ER, Kumar A, Criego AB, Benedict LE, Rao JP, Henry PG, Van De Moortele PF, Gruetter R (2007) Human brain glycogen content and metabolism: implications on its role in brain energy metabolism. Am J Physiol Endocrinol Metab 292(3):E946–E951

    PubMed  CAS  Google Scholar 

  • Pancrazio JJ, Whelan JP, Borkholder DA, Ma W, Stenger DA (1999) Development and application of cell-based biosensors. Ann Biomed Eng 27(6):697–711

    PubMed  CAS  Google Scholar 

  • Parkin M, Hopwood S, Jones DA, Hashemi P, Landolt H, Fabricius M, Lauritzen M, Boutelle MG, Strong AJ (2005) Dynamic changes in brain glucose and lactate in pericontusional areas of the human cerebral cortex, monitored with rapid sampling on-line microdialysis: relationship with depolarisation-like events. J Cereb Blood Flow Metab 25(3):402–413

    PubMed  CAS  Google Scholar 

  • Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55(12): 1251–1262

    PubMed  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91(22):10625–10629

    PubMed  CAS  Google Scholar 

  • Perdomo J, Hinkers H, Sundermeier C, Seifert W, Martinez MO, Knoll M (2000) Miniaturized real-time monitoring system for L-lactate and glucose using microfabricated multi-enzyme sensors. Biosens Bioelectron 15(9–10):515–522

    PubMed  CAS  Google Scholar 

  • Plock N, Kloft C (2005) Microdialysis–theoretical background and recent implementation in applied life-sciences. Eur J Pharm Sci 25(1):1–24

    PubMed  CAS  Google Scholar 

  • Rabenstein K, McShane AJ, McKenna MJ, Dempsey E, Keaveny TV, Freaney R (1996) An intravascular microdialysis sampling system suitable for application in continuous biochemical monitoring of glucose and lactate. Technol Health Care 4(1):67–76

    PubMed  CAS  Google Scholar 

  • Reinstrup P, Stahl N, Mellergard P, Uski T, Ungerstedt U, Nordstrom CH (2000) Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery 47(3):701–709

    PubMed  CAS  Google Scholar 

  • Rhemrev-Boom MM, Jonker MA, Venema K, Jobst G, Tiessena R, Korf J (2001) On-line continuous monitoring of glucose or lactate by ultraslow microdialysis combined with a flow-through nanoliter biosensor based on poly(m-phenylenediamine) ultra-thin polymer membrane as enzyme electrode. Analyst 126(7):1073–1079

    PubMed  CAS  Google Scholar 

  • Rhemrev-Boom MM, Tiessen RG, Jonker AA, Venema K, Vadgama P, Korf J (2002) A lightweight measuring device for the continuous in vivo monitoring of glucose by means of ultraslow microdialysis in combination with a miniaturised flow-through biosensor. Clin Chim Acta 316(1–2):1–10

    PubMed  CAS  Google Scholar 

  • Rosdahl H, Hamrin K, Ungerstedt U, Henriksson J (1998) Metabolite levels in human skeletal muscle and adipose tissue studied with microdialysis at low perfusion flow. Am J Physiol 274(5(Pt 1)):E936–E945

    PubMed  CAS  Google Scholar 

  • Rosdahl H, Ungerstedt U, Henriksson J (1997) Microdialysis in human skeletal muscle and adipose tissue at low flow rates is possible if dextran-70 is added to prevent loss of perfusion fluid. Acta Physiol Scand 159(3):261–262

    PubMed  CAS  Google Scholar 

  • Rosdahl H, Ungerstedt U, Jorfeldt L, Henriksson J (1993) Interstitial glucose and lactate balance in human skeletal muscle and adipose tissue studied by microdialysis. J Physiol 471:637–657

    PubMed  CAS  Google Scholar 

  • Rosenbloom AJ, Sipe DM, Weedn VW (2005) Microdialysis of proteins: performance of the CMA/20 probe. J Neurosci Methods 148(2):147–153

    PubMed  CAS  Google Scholar 

  • Roy CS, Sherrington CS (1890) On the regulation of the blood-supply of the brain. J Physiol 11(1–2):85–158

    PubMed  CAS  Google Scholar 

  • Rutherford EC, Pomerleau F, Huettl P, Stromberg I, Gerhardt GA (2007) Chronic second-by-second measures of L-glutamate in the central nervous system of freely moving rats. J Neurochem 102(3):712–722

    PubMed  CAS  Google Scholar 

  • Sakowitz OW, Stover JF, Sarrafzadeh AS, Unterberg AW, Kiening KL (2007) Effects of mannitol bolus administration on intracranial pressure, cerebral extracellular metabolites, and tissue oxygenation in severely head-injured patients. J Trauma 62(2):292–298

    PubMed  CAS  Google Scholar 

  • Savenije B, Venema K, Gerritzen MA, Lambooij E, Korf J (2003) Minimally invasive technique based on ultraslow ultrafiltration to collect and store time profiles of analytes. Anal Chem 75(17):4397–4401

    PubMed  CAS  Google Scholar 

  • Schlenk F, Graetz D, Nagel A, Schmidt M, Sarrafzadeh AS (2008) Insulin-related decrease in cerebral glucose despite normoglycemia in aneurysmal subarachnoid hemorrhage. Crit Care 121:R9

    Google Scholar 

  • Schulz MK, Wang LP, Tange M, Bjerre P (2000) Cerebral microdialysis monitoring: determination of normal and ischemic cerebral metabolisms in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 93(5):808–814

    PubMed  CAS  Google Scholar 

  • Schurr A, Rigor BM (1998) Brain anaerobic lactate production: a suicide note or a survival kit? Dev Neurosci 20(4–5):348–357

    PubMed  CAS  Google Scholar 

  • Schutte RJ, Oshodi SA, Reichert WM (2004) In vitro characterization of microdialysis sampling of macromolecules. Anal Chem 76(20):6058–6063

    PubMed  CAS  Google Scholar 

  • Shram NF, Netchiporouk LI, Martelet C, Jaffrezic-Renault N, Bonnet C, Cespuglio R (1998) In vivo voltammetric detection of rat brain lactate with carbon fiber microelectrodes coated with lactate oxidase. Anal Chem 70(13):2618–2622

    PubMed  CAS  Google Scholar 

  • Shuaib A, Xu K, Crain B, Siren AL, Feuerstein G, Hallenbeck J, Davis JN (1990) Assessment of damage from implantation of microdialysis probes in the rat hippocampus with silver degeneration staining. Neurosci Lett 112(2–3):149–154

    PubMed  CAS  Google Scholar 

  • Slais K, Vorisek I, Zoremba N, Homola A, Dmytrenko L, Sykova E (2008) Brain metabolism and diffusion in the rat cerebral cortex during pilocarpine-induced status epilepticus. Exp Neurol 209(1):145–154

    PubMed  CAS  Google Scholar 

  • Smith PJ, Hammar K, Porterfield DM, Sanger RH, Trimarchi JR (1999) Self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux. Microsc Res Tech 46(6):398–417

    PubMed  CAS  Google Scholar 

  • Sojka JE, Adams SB, Rohde C, Janie EM (2000) Surgical implantation of ultrafiltration probes in ovine bone and muscle. J Invest Surg 13(5):289–294

    PubMed  CAS  Google Scholar 

  • Soto-Montenegro ML, Vaquero JJ, Arango C, Ricaurte G, Garcia-Barreno P, Desco M (2007) Effects of MDMA on blood glucose levels and brain glucose metabolism. Eur J Nucl Med Mol Imaging 34(6):916–925

    PubMed  CAS  Google Scholar 

  • Spehar A, Tiedje L, Sojka JE, Janle EM, Kissinger PT (1998) Recovery of endogenous ions from subcutaneous and intramuscular spaces in horses using ultrafiltrate probes. Curr Sep 17(2):47–51

    CAS  Google Scholar 

  • Stephans SE, Whittingham TS, Douglas AJ, Lust WD, Yamamoto BK (1998) Substrates of energy metabolism attenuate methamphetamine-induced neurotoxicity in striatum. J Neurochem 71(2):613–621

    PubMed  CAS  Google Scholar 

  • Storm-Mathisen J (1977) Localization of transmitter candidates in the brain: the hippocampal formation as a model. Prog Neurobiol 8(2):119–181

    PubMed  CAS  Google Scholar 

  • Strong AJ, Boutelle MG, Vespa PM, Bullock MR, Bhatia R, Hashemi P (2005) Treatment of critical care patients with substantial acute ischemic or traumatic brain injury. Crit Care Med 33(9):2147–2149

    PubMed  Google Scholar 

  • Thevenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16(1–2):121–131

    PubMed  CAS  Google Scholar 

  • Thompson JK, Peterson MR, Freeman RD (2005) Separate spatial scales determine neural activity-dependent changes in tissue oxygen within central visual pathways. J Neurosci 25(39): 9046–9058

    PubMed  CAS  Google Scholar 

  • Tiessen RG, Kaptein WA, Venema K, Korf J (1999) Slow ultrafiltration for continuous in vivo sampling: application for glucose and lactate in man. Anal Chim Acta 379:327–335

    CAS  Google Scholar 

  • Tiessen RG, Rhemrev-Boom MM, Korf J (2002) Glucose gradient differences in subcutaneous tissue of healthy volunteers assessed with ultraslow microdialysis and a nanolitre glucose sensor. Life Sci 70(21):2457–2466

    PubMed  CAS  Google Scholar 

  • Tiessen RG, Tio RA, Hoekstra A, Venema K, Korf J (2001) An ultrafiltration catheter for monitoring of venous lactate and glucose around myocardial ischemia. Biosens Bioelectron 16(3):159–167

    PubMed  CAS  Google Scholar 

  • Trickler WJ, Miller DW (2003) Use of osmotic agents in microdialysis studies to improve the recovery of macromolecules. J Pharm Sci 92(7):1419–1427

    PubMed  CAS  Google Scholar 

  • Ungerstedt U, Pycock C (1974) Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss 30(1–3):44–55

    PubMed  CAS  Google Scholar 

  • Ungerstedt U, Rostami E (2004) Microdialysis in neurointensive care. Curr Pharm Des 10(18):2145–2152

    PubMed  CAS  Google Scholar 

  • Vafaee MS, Gjedde A (2004) Spatially dissociated flow-metabolism coupling in brain activation. Neuroimage 21(2):507–515

    PubMed  Google Scholar 

  • van der Kuil JH, Korf J (1991) On-line monitoring of extracellular brain glucose using microdialysis and a NADPH-linked enzymatic assay. J Neurochem 57(2):648–654

    PubMed  Google Scholar 

  • Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, Glenn TC, McArthur DL, Hovda DA (2005) Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab 25(6):763–774

    PubMed  CAS  Google Scholar 

  • Vespa P, Boonyaputthikul R, McArthur DL, Miller C, Etchepare M, Bergsneider M, Glenn T, Martin N, Hovda D (2006) Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injury. Crit Care Med 34(3):850–856

    PubMed  CAS  Google Scholar 

  • von Baeyer H, Lajous-Petter A, Debrandt W, Hampl H, Kochinke F, Herbst R (1988) Surface reactions on blood contact during haemodialysis and haemofiltration with various membrane types. J Neurosci Methods 36:215–229

    Google Scholar 

  • Wang L, Dong Y, Yu X, Shangguan DH, Zhao R, Han HW, Liu GQ (2002) Analysis of glucose and lactate in dialysate from hypothalamus of rats after exhausting swimming using microdialysis. Biomed Chromatogr 16(7):427–431

    PubMed  CAS  Google Scholar 

  • Wisniewski N, Klitzman B, Miller B, Reichert WM (2001) Decreased analyte transport through implanted membranes: differentiation of biofouling from tissue effects. J Biomed Mater Res 57(4):513–521

    PubMed  CAS  Google Scholar 

  • Wisniewski N, Moussy F, Reichert WM (2000) Characterization of implantable biosensor ­membrane biofouling. Fresenius J Anal Chem 366(6–7):611–621

    PubMed  CAS  Google Scholar 

  • Wisniewski N, Reichert M (2000) Methods for reducing biosensor membrane biofouling. Colloids Surf B Biointerfaces 18(3–4):197–219

    PubMed  CAS  Google Scholar 

  • Yang Q, Atanasov P, Wilkins E (1998) An integrated needle-type biosensor for intravascular ­glucose and lactate monitoring. Electroanalysis 10(11):752–757

    CAS  Google Scholar 

  • Yang S, Huang CM (2007) Recent advances in protein profiling of tissues and tissue fluids. Expert Rev Proteomics 4(4):515–529

    PubMed  CAS  Google Scholar 

  • Yao T, Yano T, Nishino H (2004) Simultaneous in vivo monitoring of glucose, L-lactate, and pyruvate concentrations in rat brain by a flow-injection biosensor system with an on-line microdialysis sampling. Anal Chim Acta 510(1):53–59

    CAS  Google Scholar 

  • Zauner A, Doppenberg E, Woodward JJ, Allen C, Jebraili S, Young HF, Bullock R (1997a) Multiparametric continuous monitoring of brain metabolism and substrate delivery in neurosurgical patients. Neurol Res 19(3):265–273

    PubMed  CAS  Google Scholar 

  • Zauner A, Doppenberg EM, Woodward JJ, Choi SC, Young HF, Bullock R (1997b) Continuous monitoring of cerebral substrate delivery and clearance: initial experience in 24 patients with severe acute brain injuries. Neurosurgery 41(5):1082–1091

    PubMed  CAS  Google Scholar 

  • Zhang FF, Wan Q, Li CX, Wang XL, Zhu ZQ, Xian YZ, Jin LT, Yamamoto K (2004) Simultaneous assay of glucose, lactate, L-glutamate and hypoxanthine levels in a rat striatum using enzyme electrodes based on neutral red-doped silica nanoparticles. Anal Bioanal Chem 380(4):637–642

    PubMed  CAS  Google Scholar 

  • Zhao S, Pinholt EM, Madsen JE, Donath K (2000) Histological evaluation of different biodegradable and non-biodegradable membranes implanted subcutaneously in rats. J Craniomaxillofac Surg 28(2):116–122

    PubMed  CAS  Google Scholar 

  • Zoremba N, Homola A, Rossaint R, Sykova E (2007) Brain metabolism and extracellular space diffusion parameters during and after transient global hypoxia in the rat cortex. Exp Neurol 203(1):34–41

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Support of the Commission of the European Communities, Director General for DG XII Science, Research and Development, Biomed 2 Program PL-972726, and of Dutch Technology Foundation (STW; grants GGN 4680 and GPG 6038) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Korf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Huinink, K., Korf, J., Gramsbergen, J.B. (2012). Microdialysis and Microfiltration: Technology and Cerebral Applications for Energy Substrates. In: Choi, IY., Gruetter, R. (eds) Neural Metabolism In Vivo. Advances in Neurobiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1788-0_13

Download citation

Publish with us

Policies and ethics