Skip to main content

Differential Functions of Stromal and Epithelial Androgen Receptor in Prostate Cancer Before and After Castration Resistant Stage

  • Chapter
  • First Online:
Advances in Rapid Sex-Steroid Action
  • 561 Accesses

Abstract

Androgen receptor (AR) has been the center of prostate cancer (PCa) therapy for decades, so androgen deprivation therapy (ADT) to suppress androgens binding to AR has become the major therapeutic option. However, the ADT is initially effective on blocking tumor growth, but eventually fails, leading to a stage of castration resistant prostate cancer and more advanced metastatic stage. The failure might be due to the nonspecific targeting of androgen/AR signaling without considering the tumor stage or cell types comprising the tumor microenvironment. The recent accumulating evidences indicate that the AR role is different in early (positive role) and advanced metastatic stage of PCa (suppressive role). In addition, AR was shown to act as a tumor promoter in luminal epithelial and stromal cells, but as a suppressor in basal and stem/progenitor/intermediate cells. Therefore, targeting androgen/AR signaling can suppress one type of tumor at a specific stage, but may lead to undesired more aggressive tumors. Accordingly, a combined therapy targeting both tumor stages and different cell types in the tumor microenvironment should be considered. Recently, several promising anti-androgen and anti-AR drugs have been developed and their efficiency is being tested. So, the combination therapy strategy to target metastatic tumors and other types of cells together with the new drugs targeting androgen/AR signaling might overcome the current failure of the ADT method and bring in more efficient therapy to battle PCa. This chapter describes the AR role in different tumor stages and cell types, and discusses the better therapeutic approaches with more effective outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huggins C, Hodges CV (1972) Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. CA Cancer J Clin 22:232–240

    Article  PubMed  CAS  Google Scholar 

  2. Chang CS, Kokontis J, Liao ST (1988) Molecular cloning of human and rat complementary DNA encoding androgen receptors. Science 240:324–326

    Article  PubMed  CAS  Google Scholar 

  3. Griffiths K, Denis LJ (2000) Exploitable mechanisms for the blockade of androgenic action. Prostate Suppl 10:43–51

    Article  PubMed  CAS  Google Scholar 

  4. Roy AK, Lavrovsky Y, Song CS, Chen S, Jung MH et al (1999) Regulation of androgen action. Vitam Horm 55:309–352

    Article  PubMed  CAS  Google Scholar 

  5. Shimazaki J, Kurihara H, Ito Y, Shida K (1965) Testosterone metabolism in prostate; formation of androstan-17-beta-ol-3-one and androst-4-ene-3, 17-dione, and inhibitory effect of natural and synthetic estrogens. Gunma J Med Sci 14:313–325

    PubMed  CAS  Google Scholar 

  6. Anderson KM, Liao S (1968) Selective retention of dihydrotestosterone by prostatic nuclei. Nature 219:277–279

    Article  PubMed  CAS  Google Scholar 

  7. Mizokami A, Koh E, Fujita H, Maeda Y, Egawa M et al (2004) The adrenal androgen androstenediol is present in prostate cancer tissue after androgen deprivation therapy and activates mutated androgen receptor. Cancer Res 64:765–771

    Article  PubMed  CAS  Google Scholar 

  8. Titus MA, Schell MJ, Lih FB, Tomer KB, Mohler JL (2005) Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res 11:4653–4657

    Article  PubMed  CAS  Google Scholar 

  9. Titus MA, Gregory CW, Ford OH 3rd, Schell MJ, Maygarden SJ et al (2005) Steroid 5alpha-reductase isozymes I and II in recurrent prostate cancer. Clin Cancer Res 11:4365–4371

    Article  PubMed  CAS  Google Scholar 

  10. Huang H, Muddiman DC, Tindall DJ (2004) Androgens negatively regulate forkhead transcription factor FKHR (FOXO1) through a proteolytic mechanism in prostate cancer cells. J Biol Chem 279:13866–13877

    Article  PubMed  CAS  Google Scholar 

  11. Sadi MV, Walsh PC, Barrack ER (1991) Immunohistochemical study of androgen receptors in metastatic prostate cancer. Comparison of receptor content and response to hormonal therapy. Cancer 67:3057–3064

    Article  PubMed  CAS  Google Scholar 

  12. Mohler JL, Chen Y, Hamil K, Hall SH, Cidlowski JA et al (1996) Androgen and glucocorticoid receptors in the stroma and epithelium of prostatic hyperplasia and carcinoma. Clin Cancer Res 2:889–895

    PubMed  CAS  Google Scholar 

  13. Hobisch A, Culig Z, Radmayr C, Bartsch G, Klocker H et al (1996) Androgen receptor status of lymph node metastases from prostate cancer. Prostate 28:129–135

    Article  PubMed  CAS  Google Scholar 

  14. van der Kwast TH, Schalken J, Ruizeveld de Winter JA, van Vroonhoven CC, Mulder E et al (1991) Androgen receptors in endocrine-therapy-resistant human prostate cancer. Int J Cancer 48:189–193

    Article  PubMed  Google Scholar 

  15. Kung HJ, Evans CP (2009) Oncogenic activation of androgen receptor. Urol Oncol 27:48–52

    Article  PubMed  CAS  Google Scholar 

  16. Lee SO, Chun JY, Nadiminty N, Lou W, Gao AC (2007) Interleukin-6 undergoes transition from growth inhibitor associated with neuroendocrine differentiation to stimulator accompanied by androgen receptor activation during LNCaP prostate cancer cell progression. Prostate 67:764–773

    Article  PubMed  CAS  Google Scholar 

  17. Lee SO, Lou W, Nadiminty N, Lin X, Gao AC (2005) Requirement for NF-(kappa)B in interleukin-4-induced androgen receptor activation in prostate cancer cells. Prostate 64:160–167

    Article  PubMed  CAS  Google Scholar 

  18. Desai SJ, Ma AH, Tepper CG, Chen HW, Kung HJ (2006) Inappropriate activation of the androgen receptor by nonsteroids: involvement of the src kinase pathway and its therapeutic implications. Cancer Res 66:10449–10459

    Article  PubMed  CAS  Google Scholar 

  19. Ishiguro H, Akimoto K, Nagashima Y, Kojima Y, Sasaki T et al (2009) aPKClambda/iota promotes growth of prostate cancer cells in an autocrine manner through transcriptional activation of interleukin-6. Proc Natl Acad Sci U S A 106:16369–16374

    Article  PubMed  CAS  Google Scholar 

  20. Cabrespine A, Guy L, Chollet P, Debiton E, Bay JO (2004) Molecular mechanisms involved in hormone resistance of prostate cancer. Bull Cancer 91:747–757

    PubMed  CAS  Google Scholar 

  21. Hammacher A, Thompson EW, Williams ED (2005) Interleukin-6 is a potent inducer of S100P, which is up-regulated in androgen-refractory and metastatic prostate cancer. Int J Biochem Cell Biol 37:442–450

    Article  PubMed  CAS  Google Scholar 

  22. Chuang TD, Chen SJ, Lin FF, Veeramani S, Kumar S et al (2010) Human prostatic acid phosphatase, an authentic tyrosine phosphatase, dephosphorylates ErbB-2 and regulates prostate cancer cell growth. J Biol Chem 285:23598–23606

    Article  PubMed  CAS  Google Scholar 

  23. Zhang D, He D, Xue Y, Wang R, Wu K et al (2011) PrLZ protects prostate cancer cells from apoptosis induced by androgen deprivation via the activation of Stat3/Bcl-2 pathway. Cancer Res 71:2193–2202

    Article  PubMed  CAS  Google Scholar 

  24. Guo Z, Dai B, Jiang T, Xu K, Xie Y et al (2006) Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell 10:309–319

    Article  PubMed  CAS  Google Scholar 

  25. El Sheikh SS, Domin J, Abel P, Stamp G, Lalani el N (2003) Androgen-independent prostate cancer: potential role of androgen and ErbB receptor signal transduction crosstalk. Neoplasia 5:99–109

    PubMed  CAS  Google Scholar 

  26. Leotoing L, Manin M, Monte D, Baron S, Communal Y et al (2007) Crosstalk between androgen receptor and epidermal growth factor receptor-signalling pathways: a molecular switch for epithelial cell differentiation. J Mol Endocrinol 39:151–162

    Article  PubMed  CAS  Google Scholar 

  27. Montalvo L, Carmena MJ, Solano RM, Clemente C, Roman ID et al (2000) Effect of flutamide-induced androgen-receptor blockade on adenylate cyclase activation through G-protein coupled receptors in rat prostate. Cell Signal 12:311–316

    Article  PubMed  CAS  Google Scholar 

  28. Guo Z, Yang X, Sun F, Jiang R, Linn DE et al (2009) A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 69:2305–2313

    Article  PubMed  CAS  Google Scholar 

  29. Watson PA, Chen YF, Balbas MD, Wongvipat J, Socci ND et al (2010) Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc Natl Acad Sci U S A 107:16759–16765

    Article  PubMed  CAS  Google Scholar 

  30. Heinlein CA, Chang C (2002) Androgen receptor (AR) coregulators: an overview. Endocr Rev 23:175–200

    Article  PubMed  CAS  Google Scholar 

  31. Rahman M, Miyamoto H, Chang C (2004) Androgen receptor coregulators in prostate cancer: mechanisms and clinical implications. Clin Cancer Res 10:2208–2219

    Article  PubMed  CAS  Google Scholar 

  32. Yeh S, Chang C (1996) Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc Natl Acad Sci U S A 93:5517–5521

    Article  PubMed  CAS  Google Scholar 

  33. Yeh S, Miyamoto H, Chang C (1997) Hydroxyflutamide may not always be a pure antiandrogen. Lancet 349:852–853

    Article  PubMed  CAS  Google Scholar 

  34. Onate SA, Tsai SY, Tsai MJ, O’Malley BW (1995) Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270:1354–1357

    Article  PubMed  CAS  Google Scholar 

  35. Voegel JJ, Heine MJ, Zechel C, Chambon P, Gronemeyer H (1996) TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J 15:3667–3675

    PubMed  CAS  Google Scholar 

  36. Nagy L, Kao HY, Chakravarti D, Lin RJ, Hassig CA et al (1997) Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89:373–380

    Article  PubMed  CAS  Google Scholar 

  37. Alland L, Muhle R, Hou H Jr, Potes J, Chin L et al (1997) Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387:49–55

    Article  PubMed  CAS  Google Scholar 

  38. Yeh S, Lin HK, Kang HY, Thin TH, Lin MF et al (1999) From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci U S A 96:5458–5463

    Article  PubMed  CAS  Google Scholar 

  39. Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J et al (1997) Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389:194–198

    Article  PubMed  CAS  Google Scholar 

  40. Fu M, Wang C, Reutens AT, Wang J, Angeletti RH et al (2000) p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. J Biol Chem 275:20853–20860

    Article  PubMed  CAS  Google Scholar 

  41. Litvinov IV, De Marzo AM, Isaacs JT (2003) Is the Achilles’ heel for prostate cancer therapy a gain of function in androgen receptor signaling? J Clin Endocrinol Metab 88:2972–2982

    Article  PubMed  CAS  Google Scholar 

  42. Tang DG, Patrawala L, Calhoun T, Bhatia B, Choy G et al (2007) Prostate cancer stem/progenitor cells: identification, characterization, and implications. Mol Carcinog 46:1–14

    Article  PubMed  CAS  Google Scholar 

  43. Lawson DA, Zong Y, Memarzadeh S, Xin L, Huang J et al (2010) Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc Natl Acad Sci U S A 107:2610–2615

    Article  PubMed  CAS  Google Scholar 

  44. van Leenders GJ, Aalders TW, Hulsbergen-van de Kaa CA, Ruiter DJ, Schalken JA (2001) Expression of basal cell keratins in human prostate cancer metastases and cell lines. J Pathol 195:563–570

    Article  PubMed  Google Scholar 

  45. Patrawala L, Calhoun-Davis T, Schneider-Broussard R, Tang DG (2007) Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44 + alpha2beta1 + cell population is enriched in tumor-initiating cells. Cancer Res 67:6796–6805

    Article  PubMed  CAS  Google Scholar 

  46. Sund M, Kalluri R (2009) Tumor stroma derived biomarkers in cancer. Cancer Metastasis Rev 28:177–183

    Article  PubMed  Google Scholar 

  47. DeVita VT Jr, Canellos GP (2011) Hematology in 2010: new therapies and standard of care in oncology. Nat Rev Clin Oncol 8:67–68

    Article  PubMed  CAS  Google Scholar 

  48. Mathew P (2008) Prolonged control of progressive castration-resistant metastatic prostate cancer with testosterone replacement therapy: the case for a prospective trial. Ann Oncol 19:395–396

    Article  PubMed  CAS  Google Scholar 

  49. Meacham RB (2003) Androgen replacement therapy: treatment advances and clinical implications. Rev Urol 5:245–247

    PubMed  Google Scholar 

  50. Morris MJ, Huang D, Kelly WK, Slovin SF, Stephenson RD et al (2009) Phase 1 trial of high-dose exogenous testosterone in patients with castration-resistant metastatic prostate cancer. Eur Urol 56:237–244

    Article  PubMed  CAS  Google Scholar 

  51. van Bokhoven A, Varella-Garcia M, Korch C, Johannes WU, Smith EE et al (2003) Molecular characterization of human prostate carcinoma cell lines. Prostate 57:205–225

    Article  PubMed  CAS  Google Scholar 

  52. Veldscholte J, Ris-Stalpers C, Kuiper GG, Jenster G, Berrevoets C et al (1990) A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun 173:534–540

    Article  PubMed  CAS  Google Scholar 

  53. Yang Q, Fung KM, Day WV, Kropp BP, Lin HK (2005) Androgen receptor signaling is required for androgen-sensitive human prostate cancer cell proliferation and survival. Cancer Cell Int 5:8

    Article  PubMed  CAS  Google Scholar 

  54. Compagno D, Merle C, Morin A, Gilbert C, Mathieu JR et al (2007) SIRNA-directed in vivo silencing of androgen receptor inhibits the growth of castration-resistant prostate carcinomas. PLoS One 2:e1006

    Article  PubMed  CAS  Google Scholar 

  55. Liao X, Tang S, Thrasher JB, Griebling TL, Li B (2005) Small-interfering RNA-induced androgen receptor silencing leads to apoptotic cell death in prostate cancer. Mol Cancer Ther 4:505–515

    Article  PubMed  CAS  Google Scholar 

  56. Eder IE, Culig Z, Ramoner R, Thurnher M, Putz T et al (2000) Inhibition of LncaP prostate cancer cells by means of androgen receptor antisense oligonucleotides. Cancer Gene Ther 7:997–1007

    Article  PubMed  CAS  Google Scholar 

  57. Eder IE, Hoffmann J, Rogatsch H, Schafer G, Zopf D et al (2002) Inhibition of LNCaP prostate tumor growth in vivo by an antisense oligonucleotide directed against the human androgen receptor. Cancer Gene Ther 9:117–125

    Article  PubMed  CAS  Google Scholar 

  58. Joly-Pharaboz MO, Soave MC, Nicolas B, Mebarki F, Renaud M et al (1995) Androgens inhibit the proliferation of a variant of the human prostate cancer cell line LNCaP. J Steroid Biochem Mol Biol 55:67–76

    Article  PubMed  CAS  Google Scholar 

  59. Kokontis JM, Hay N, Liao S (1998) Progression of LNCaP prostate tumor cells during androgen deprivation: hormone-independent growth, repression of proliferation by androgen, and role for p27Kip1 in androgen-induced cell cycle arrest. Mol Endocrinol 12:941–953

    Article  PubMed  CAS  Google Scholar 

  60. Joly-Pharaboz MO, Ruffion A, Roch A, Michel-Calemard L, Andre J et al (2000) Inhibition of growth and induction of apoptosis by androgens of a variant of LNCaP cell line. J Steroid Biochem Mol Biol 73:237–249

    Article  PubMed  CAS  Google Scholar 

  61. Soto AM, Lin TM, Sakabe K, Olea N, Damassa DA et al (1995) Variants of the human prostate LNCaP cell line as tools to study discrete components of the androgen-mediated proliferative response. Oncol Res 7:545–558

    PubMed  CAS  Google Scholar 

  62. Litvinov IV, Antony L, Dalrymple SL, Becker R, Cheng L et al (2006) PC3, but not DU145, human prostate cancer cells retain the coregulators required for tumor suppressor ability of androgen receptor. Prostate 66:1329–1338

    Article  PubMed  CAS  Google Scholar 

  63. Yuan S, Trachtenberg J, Mills GB, Brown TJ, Xu F et al (1993) Androgen-induced inhibition of cell proliferation in an androgen-insensitive prostate cancer cell line (PC-3) transfected with a human androgen receptor complementary DNA. Cancer Res 53:1304–1311

    PubMed  CAS  Google Scholar 

  64. Altuwaijri S, Wu CC, Niu YJ, Mizokami A, Chang HC et al (2007) Expression of human AR cDNA driven by its own promoter results in mild promotion, but not suppression, of growth in human prostate cancer PC-3 cells. Asian J Androl 9:181–188

    Article  PubMed  CAS  Google Scholar 

  65. Shen R, Sumitomo M, Dai J, Harris A, Kaminetzky D et al (2000) Androgen-induced growth inhibition of androgen receptor expressing androgen-independent prostate cancer cells is mediated by increased levels of neutral endopeptidase. Endocrinology 141:1699–1704

    Article  PubMed  CAS  Google Scholar 

  66. Xu XF, Zhou SW, Zhang X, Ye ZQ, Zhang JH et al (2006) Prostate androgen-regulated gene: a novel potential target for androgen-independent prostate cancer therapy. Asian J Androl 8:455–462

    Article  PubMed  CAS  Google Scholar 

  67. Niu Y, Altuwaijri S, Lai KP, Wu CT, Ricke WA et al (2008) Androgen receptor is a tumor suppressor and proliferator in prostate cancer. Proc Natl Acad Sci U S A 105:12182–12187

    Article  PubMed  CAS  Google Scholar 

  68. Chlenski A, Nakashiro K, Ketels KV, Korovaitseva GI, Oyasu R (2001) Androgen receptor expression in androgen-independent prostate cancer cell lines. Prostate 47:66–75

    Article  PubMed  CAS  Google Scholar 

  69. Litvinov IV, Vander Griend DJ, Antony L, Dalrymple S, De Marzo AM et al (2006) Androgen receptor as a licensing factor for DNA replication in androgen-sensitive prostate cancer cells. Proc Natl Acad Sci U S A 103:15085–15090

    Article  PubMed  CAS  Google Scholar 

  70. Scaccianoce E, Festuccia C, Dondi D, Guerini V, Bologna M et al (2003) Characterization of prostate cancer DU145 cells expressing the recombinant androgen receptor. Oncol Res 14:101–112

    PubMed  CAS  Google Scholar 

  71. Nagakawa O, Akashi T, Hayakawa Y, Junicho A, Koizumi K et al (2004) Differential expression of integrin subunits in DU-145/AR prostate cancer cells. Oncol Rep 12:837–841

    PubMed  CAS  Google Scholar 

  72. Sramkoski RM, Pretlow TG 2nd, Giaconia JM, Pretlow TP, Schwartz S et al (1999) A new human prostate carcinoma cell line, 22Rv1. In Vitro Cell Dev Biol Anim 35:403–409

    Article  PubMed  CAS  Google Scholar 

  73. Yeh S, Tsai MY, Xu Q, Mu XM, Lardy H et al (2002) Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. Proc Natl Acad Sci U S A 99:13498–13503

    Article  PubMed  CAS  Google Scholar 

  74. Wu CT, Altuwaijri S, Ricke WA, Huang SP, Yeh S et al (2007) Increased prostate cell proliferation and loss of cell differentiation in mice lacking prostate epithelial androgen receptor. Proc Natl Acad Sci U S A 104:12679–12684

    Article  PubMed  CAS  Google Scholar 

  75. Matsumoto T, Takeyama K, Sato T, Kato S (2005) Study of androgen receptor functions by genetic models. J Biochem 138:105–110

    Article  PubMed  CAS  Google Scholar 

  76. Walters KA, Allan CM, Jimenez M, Lim PR, Davey RA et al (2007) Female mice haploinsufficient for an inactivated androgen receptor (AR) exhibit age-dependent defects that resemble the AR null phenotype of dysfunctional late follicle development, ovulation, and fertility. Endocrinology 148:3674–3684

    Article  PubMed  CAS  Google Scholar 

  77. Mulholland DJ, Tran LM, Li Y, Cai H, Morim A et al (2011) Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell 19:792--804

    Google Scholar 

  78. Verhagen AP, Ramaekers FC, Aalders TW, Schaafsma HE, Debruyne FM et al (1992) Colocalization of basal and luminal cell-type cytokeratins in human prostate cancer. Cancer Res 52:6182–6187

    PubMed  CAS  Google Scholar 

  79. Collins AT, Habib FK, Maitland NJ, Neal DE (2001) Identification and isolation of human prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression. J Cell Sci 114:3865–3872

    PubMed  CAS  Google Scholar 

  80. Wang X, Kruithof-de Julio M, Economides KD, Walker D, Yu H et al (2009) A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461:495–500

    Article  PubMed  CAS  Google Scholar 

  81. Tang Y, Hamburger AW, Wang L, Khan MA, Hussain A (2009) Androgen deprivation and stem cell markers in prostate cancers. Int J Clin Exp Pathol 3:128–138

    PubMed  Google Scholar 

  82. Kleeberger W, Bova GS, Nielsen ME, Herawi M, Chuang AY et al (2007) Roles for the stem cell associated intermediate filament nestin in prostate cancer migration and metastasis. Cancer Res 67:9199–9206

    Article  PubMed  CAS  Google Scholar 

  83. Yu DJ, Tang YQ, Shi YF, Wang YC, Zhuo J et al (2010) Proportion of intermediate epithelial cells and human prostate cancer. Zhonghua Nan Ke Xue 16:1063–1067

    PubMed  CAS  Google Scholar 

  84. Niu Y, Wang J, Shang Z, Huang SP, Shyr CR et al (2011) Increased CK5/CK8-positive intermediate cells with stromal smooth muscle cell atrophy in the mice lacking prostate epithelial androgen receptor. PLoS One 6:e20202

    Article  PubMed  CAS  Google Scholar 

  85. Cunha GR, Hayward SW, Wang YZ, Ricke WA (2003) Role of the stromal microenvironment in carcinogenesis of the prostate. Int J Cancer 107:1–10

    Article  PubMed  CAS  Google Scholar 

  86. Cunha GR, Ricke W, Thomson A, Marker PC, Risbridger G et al (2004) Hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development. J Steroid Biochem Mol Biol 92:221–236

    Article  PubMed  CAS  Google Scholar 

  87. Barclay WW, Woodruff RD, Hall MC, Cramer SD (2005) A system for studying epithelial-stromal interactions reveals distinct inductive abilities of stromal cells from benign prostatic hyperplasia and prostate cancer. Endocrinology 146:13–18

    Article  PubMed  CAS  Google Scholar 

  88. Cano P, Godoy A, Escamilla R, Dhir R, Onate SA (2007) Stromal-epithelial cell interactions and androgen receptor-coregulator recruitment is altered in the tissue microenvironment of prostate cancer. Cancer Res 67:511–519

    Article  PubMed  CAS  Google Scholar 

  89. Sun X, He H, Xie Z, Qian W, Zhau HE et al (2010) Matched pairs of human prostate stromal cells display differential tropic effects on LNCaP prostate cancer cells. In Vitro Cell Dev Biol Anim 46:538–546

    Article  PubMed  Google Scholar 

  90. Li Y, Li CX, Ye H, Chen F, Melamed J et al (2008) Decrease in stromal androgen receptor associates with androgen-independent disease and promotes prostate cancer cell proliferation and invasion. J Cell Mol Med 12:2790–2798

    Article  PubMed  CAS  Google Scholar 

  91. Tanner MJ, Welliver RC Jr, Chen M, Shtutman M, Godoy A et al (2011) Effects of androgen receptor and androgen on gene expression in prostate stromal fibroblasts and paracrine signaling to prostate cancer cells. PLoS One 6:e16027

    Article  PubMed  CAS  Google Scholar 

  92. Chambers KF, Pearson JF, Aziz N, O’Toole P, Garrod D et al (2011) Stroma regulates increased epithelial lateral cell adhesion in 3D culture: a role for actin/cadherin dynamics. PLoS One 6:e18796

    Article  PubMed  CAS  Google Scholar 

  93. Niu Y, Altuwaijri S, Yeh S, Lai KP, Yu S et al (2008) Targeting the stromal androgen receptor in primary prostate tumors at earlier stages. Proc Natl Acad Sci U S A 105:12188–12193

    Article  PubMed  CAS  Google Scholar 

  94. Yu S, Zhang C, Lin CC, Niu Y, Lai KP et al (2011) Altered prostate epithelial development and IGF-1 signal in mice lacking the androgen receptor in stromal smooth muscle cells. Prostate 71:517–524

    Article  PubMed  CAS  Google Scholar 

  95. Yu S, Yeh CR, Niu Y, Chang HC, Tsai YC et al. (2011) Altered prostate epithelial development in mice lacking the androgen receptor in stromal fibroblasts. Prostate

    Google Scholar 

  96. Zeng R, Liu ZY, Sun YH, Xu CL, Gao X et al (2010) Expressions of the androgen receptor in normal prostate, benigh prostatic hyperplasia and prostate cancer. Zhonghua Nan Ke Xue 16:967–972

    PubMed  CAS  Google Scholar 

  97. Salazar EL, Mercado E, Calzada L (2005) Prostatic cancer/benign prostatic hypertrophy. Subcellular distribution of estradiol/androgen receptors. Arch Androl 51:135–139

    Article  PubMed  CAS  Google Scholar 

  98. Andriole G, Bruchovsky N, Chung LW, Matsumoto AM, Rittmaster R et al (2004) Dihydrotestosterone and the prostate: the scientific rationale for 5alpha-reductase inhibitors in the treatment of benign prostatic hyperplasia. J Urol 172:1399–1403

    Article  PubMed  CAS  Google Scholar 

  99. Clark RV, Hermann DJ, Cunningham GR, Wilson TH, Morrill BB et al (2004) Marked suppression of dihydrotestosterone in men with benign prostatic hyperplasia by dutasteride, a dual 5alpha-reductase inhibitor. J Clin Endocrinol Metab 89:2179–2184

    Article  PubMed  CAS  Google Scholar 

  100. Liao CP, Adisetiyo H, Liang M, Roy-Burman P (2010) Cancer-associated fibroblasts enhance the gland-forming capability of prostate cancer stem cells. Cancer Res 70:7294–7303

    Article  PubMed  CAS  Google Scholar 

  101. Vander Griend DJ, D’Antonio J, Gurel B, Antony L, Demarzo AM et al (2010) Cell-autonomous intracellular androgen receptor signaling drives the growth of human prostate cancer initiating cells. Prostate 70:90–99

    Article  PubMed  CAS  Google Scholar 

  102. Odero-Marah VA, Wang R, Chu G, Zayzafoon M, Xu J et al (2008) Receptor activator of NF-kappaB ligand (RANKL) expression is associated with epithelial to mesenchymal transition in human prostate cancer cells. Cell Res 18:858–870

    Article  PubMed  CAS  Google Scholar 

  103. Zhu ML, Kyprianou N (2010) Role of androgens and the androgen receptor in epithelial-mesenchymal transition and invasion of prostate cancer cells. FASEB J 24:769–777

    Article  PubMed  CAS  Google Scholar 

  104. Massard C, Fizazi K (2011) Targeting continued androgen receptor signaling in prostate cancer. Clin Cancer Res 17:3876–3883

    Article  PubMed  CAS  Google Scholar 

  105. Chu FM, Picus J, Fracasso PM, Dreicer R, Lang Z et al (2011) A phase 1, multicenter, open-label study of the safety of two dose levels of a human monoclonal antibody to human alpha(v) integrins, intetumumab, in combination with docetaxel and prednisone in patients with castrate-resistant metastatic prostate cancer. Invest New Drugs 29:674–679

    Article  PubMed  CAS  Google Scholar 

  106. Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA et al (2009) Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324:787–790

    Article  PubMed  CAS  Google Scholar 

  107. Andersen RJ, Mawji NR, Wang J, Wang G, Haile S et al (2010) Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the amino-terminus domain of the androgen receptor. Cancer Cell 17:535–546

    Article  PubMed  CAS  Google Scholar 

  108. Yang Z, Chang YJ, Yu IC, Yeh S, Wu CC et al (2007) ASC-J9 ameliorates spinal and bulbar muscular atrophy phenotype via degradation of androgen receptor. Nat Med 13:348–353

    Article  PubMed  CAS  Google Scholar 

  109. Lai JJ, Lai KP, Chuang KH, Chang P, Yu IC et al (2009) Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-alpha expression. J Clin Invest 119:3739–3751

    Article  PubMed  CAS  Google Scholar 

  110. Wu MH, Ma WL, Hsu CL, Chen YL, Ou JH et al (2010) Androgen receptor promotes hepatitis B virus-induced hepatocarcinogenesis through modulation of hepatitis B virus RNA transcription. Sci Transl Med 2:32ra35

    Article  PubMed  CAS  Google Scholar 

  111. Lin HK, Hu YC, Yang L, Altuwaijri S, Chen YT et al (2003) Suppression versus induction of androgen receptor functions by the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer LNCaP cells with different passage numbers. J Biol Chem 278:50902–50907

    Article  PubMed  CAS  Google Scholar 

  112. Miyamoto H, Altuwaijri S, Cai Y, Messing EM, Chang C (2005) Inhibition of the Akt, cyclooxygenase-2, and matrix metalloproteinase-9 pathways in combination with androgen deprivation therapy: potential therapeutic approaches for prostate cancer. Mol Carcinog 44:1–10

    Article  PubMed  CAS  Google Scholar 

  113. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y et al (2011) Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19:575–586

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lee, S., Lai, K.P., Yeh, S., Chang, C. (2012). Differential Functions of Stromal and Epithelial Androgen Receptor in Prostate Cancer Before and After Castration Resistant Stage. In: Castoria, G., Migliaccio, A. (eds) Advances in Rapid Sex-Steroid Action. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1764-4_9

Download citation

Publish with us

Policies and ethics