Skip to main content

Abstract

Barnacles are among the “most-unwanted” by ship owners and those involved in the marine industry, especially people entrusted with maintaining marine structures as smooth as possible. Barnacles are arthropods, in the same major group as insects and spiders. They are closely related to crabs, prawns, and lobsters. The name barnacle has a curious origin. Its sudden appearance was similar to that of maggots which appear from nowhere on rotting meat. It was thought that barnacles would be in the ocean for a length of time and led people to believe that this organism also originated from the woods like the “Geese” (Arctic bird and a species of water fowl) presently known as barnacle goose, which breeds in the Arctic, a fact which was not known for long time. As no one ever witnessed the bird breeding, it was thought to spontaneously generate from trees along the shores or from rotting woods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott A (1990) Bioadhesives: potential for exploitation. Sci Prog 74:131–46

    CAS  Google Scholar 

  • Abelson A, Denny MW (1997) Settlement of marine organisms in flow. Annu Rev Ecol Syst 28:317–339

    Article  Google Scholar 

  • Aldred N, Phang IY, Conlan SL, Clare AS, Vancso JG (2008) The effects of serine protease, Alcalase, on the adhesives of barnacle cyprids (Balanus amphitrite). Biofouling 24:97–107

    Article  CAS  Google Scholar 

  • Anil AC (1991) Studies on macrofouling ecology of cirripedes in Hamana Bay (Japan), D. Agr. Thesis, Faculty of Agriculture, University of Tokyo, Tokyo, Japan

    Google Scholar 

  • Anil AC, Desai DV (1997) Starvation threshold of Balanus amphitrite larvae in relation to temperature. In: Emerging nonmetallic materials for the marine environment. Proceedings of US-Pacific Rim Workshop, Hawaii, USA, 18th–20th March, Section P, pp 12–23

    Google Scholar 

  • Anil AC, Khandeparker RDS (1998) Influence of bacterial exopolymers, conspecific adult extract and salinity on the cyprid metamorphosis of Balanus amphitrite (Cirripedia: Thoracica). Mar Ecol 19(4):279–292

    Article  Google Scholar 

  • Anil AC, Kurian J (1996) Influence of food concentration, temperature and salinity on the larval development of Balanus amphitrite. Mar Biol 127:115–124

    Article  Google Scholar 

  • Anil AC, Chiba K, Okamoto K, Kurokura H (1995) Influence of temperature and salinity on the larval development of Balanus amphitrite: Implications in the fouling ecology. Mar Ecol Prog Ser 118:159–166

    Article  Google Scholar 

  • Anil AC, Khandeparker L, Mitbavker S, Wagh AB (1997) Influence of bacterial exopolymers and the adult extract of Balanus amphitrite and Chthamalus Sp. on cyprid metamorphosis of Balanus amphitrite. Emerging Nonmetallic Materials for the Marine Environment. In: Proceedings of US-Pacific Rim Workshop, Hawaii, 18th–20th March, Section P, pp 1–11

    Google Scholar 

  • Anil AC, Desai DV, Khandeparker L (2001) Larval development and metamorphosis in Balanus amphitrite Darwin (Cirripedia: Thoracica): significance of food concentration, temperature and nucleic acids. J Exp Mar Biol Ecol 263(2):125–141

    Article  Google Scholar 

  • Barnes H (1957) Process of restoration and synchronization in marine ecology. The spring diatom increase and the spawning of the common barnacle Balanus amphitrite (L.). Annee Biol 33:67–85

    CAS  Google Scholar 

  • Barnes M (1989) Egg production in Cirripedes. Oceanogr Mar Biol Annu Rev 27:91–166

    Google Scholar 

  • Bence JR, Nisbet RM (1989) Space-limited recruitment in open systems: The impotence of time delays. Ecology 70(5):1434–1441

    Article  Google Scholar 

  • Berger MS, Emlet RB (2007) Heat-shock response of the upper intertidal barnacles Balanus glandula: Thermal stress and acclimation. Biol Bull 212:232–241

    Article  CAS  Google Scholar 

  • Brown CH (1950) Quinone tanning in the animal kingdom. Nature 165(4190):275

    Article  CAS  Google Scholar 

  • Callow ME, Callow JA (2002) Marine biofouling: a sticky problem. Biologist 49(1):10–14

    Google Scholar 

  • Carlton J, Newman N (2009) Reply to Clare and Høeg 2008. Balanus amphitrite or Amphibalanus amphitrite? A note on barnacle nomenclature. Biofouling 25:77–80

    Google Scholar 

  • Christie AO, Dalley R (1987) Barnacle fouling and its prevention. In: Southward AJ (ed) Crustacean Issues 5, Barnacle biology. Balkema AA, Rotterdam, pp 419–433

    Google Scholar 

  • Clare AS, Hoeg JT (2008) Balanus Amphitrite or Amphibalanus amphitrite? A note on barnacle nomenclature. Biofouling 24(1):55–57

    Article  Google Scholar 

  • Clare AS, Matsumura K (2000) Nature and perception of barnacle settlement pheromones. Biofouling 15(1–3):57–71

    Article  CAS  Google Scholar 

  • Clare AS, Thomas RF, Rittschof D (1995) Evidence for the involvement of cyclic AMP in the pheromonal modulation of barnacle settlement. J Exp Biol 198:655–664

    CAS  Google Scholar 

  • Connell JH (1985) The consequences of variation in initial settlement vs. post-settlement mortality in rocky intertidal communities. J Exp Mar Biol Ecol 93:11–45

    Article  Google Scholar 

  • Cowen R, Paris CB, Srinivasan A (2006) Scaling of connectivity in marine populations. Science 311:522–527

    Article  CAS  Google Scholar 

  • Crisp DJ (1962) Release of larvae by barnacles in response to the available food supply. Anim Beahv 10:382–383

    Article  Google Scholar 

  • Crisp DJ (1974) Factors influencing the settlement of marine invertebrate larvae. In: Grant PT, Mackie AM (eds) Chemoreception in marine organisms. Academic, New York, pp 177–265

    Google Scholar 

  • Crisp DJ (1976) The role of pelagic larva. In: Davis PS (ed) Perspectives in experimental biology. Pergamon, New York, pp 145–155

    Google Scholar 

  • Crisp DJ (1984) Overview of research on marine invertebrate larvae. In: Costlow JD, Tipper RC (eds) Marine biodeterioration: an interdisciplinary study. Naval Institute Press, Annapolis, pp 103–126

    Google Scholar 

  • Crisp DJ, Meadows PS (1963) Adsorbed layers: the stimulus to settlement in barnacles. Proc R Soc Lond B Biol Sci 158:364–387

    Article  CAS  Google Scholar 

  • Darwin C (1851a) A monograph on the fossil Lepadidae; or pedunculated cirripedes of Great Britain. Palaeontographical Soc, London

    Google Scholar 

  • Darwin C (1851b) A monograph on the sub-class Cirripedia. The Lepadidae; or pedunculated cirripedes, Londoan Ray Soc

    Book  Google Scholar 

  • Darwin C (1854a) A monograph on the sub-class Cirripedia. The balanidae; the verrucidae, etc. Ray Society, London

    Google Scholar 

  • Darwin C (1854b) A monograph on the fossil balanidae and verrucidae of Great Britain. Palaeontographical Society, London

    Google Scholar 

  • Davenport J (1976) A comparative study of some balanomorph barnacles exposed to fluctuating seawater concentrations. J Mar Biol Assoc UK 56:889–907

    Article  Google Scholar 

  • DePalma JR (1984) Fouling production in the world ocean. In: Garsi (ed) Proc 5th Intr Congr Mar Corr Foul, Barcelona, Spain, pp 237–244

    Google Scholar 

  • Desai DV, Anil AC (2000) Influence of temperature on the starvation threshold of nauplii of barnacle Balanus amphitrite (Cirripedia: Thoracica). Ind J Mar Sci 29:69–72

    Google Scholar 

  • Desai DV, Anil AC (2004) The impact of food type, temperature and starvation on larval development of Balanus amphitrite Darwin (Cirripedia: Thoracica). J Exp Mar Biol Ecol 306:113–137

    Article  Google Scholar 

  • Desai DV, Anil AC (2005) Recruitment of the barnacle Balanus amphitrite in a tropical estuary: implications of environmental perturbation, reproduction and larval ecology. J Mar Biol Assoc UK 85:909–920

    Article  Google Scholar 

  • Dobretsov S, Dahms HU, Qian PY (2006) Inhibition of Biofouling by marine microoganisms and their metabolites. Biofouling 22(1):43–54

    Article  CAS  Google Scholar 

  • Dreanno C, Matsumura K, Dohmae N, Takio K, Hirota H, Kirby RR, Clare AS (2006a) A novel α2—macroglobulin-like protein is the cue to gregarious settlement of the barnacle Balanus amphitrite. Proc Natl Acad Sci USA 103(39):14396–14401

    Article  CAS  Google Scholar 

  • Dreanno C, Kirby RR, Clare AS (2006b) Locating the barnacle settlement pheromone: spatial and ontogenetic expression of the settlement-inducing protein complex (SIPC) of Balanus amphitrite. Proc R Soc Lond B 273:2721–2728

    Article  CAS  Google Scholar 

  • Fales DE (1928) The light-receptive organs of certain barnacles. Biol Bull 54:534–547

    Article  Google Scholar 

  • Fernando SA (1990) Systematic status of some fouling barnacles of Indian coastal waters. Marine biofouling and power plants. In: Nair KVK, Venugopalan VP (eds) Proceedings of the ­specialists meeting on marine biodeterioration with reference to power plant cooling systems, IGCAR, Kalpakkam, 26–28 April, pp 240–250

    Google Scholar 

  • Flowerdew MW (1985) Indices of genetic identity and distance in three taxa within the Balanus amphitrite Darwin complex (Cirripedia, Thoracica). Crustaceana 49(1):7–15

    Article  Google Scholar 

  • Foster BA (1987) Barnacle ecology and adaptation. In: Southward AJ (ed) Crustacean issues 5, Barnacle biology. Balkema AA, Rotterdam

    Google Scholar 

  • Fusetani N (2004) Biofouling and antifouling. Nat Prod Rep 21:94–104

    Article  CAS  Google Scholar 

  • Gaonkar CA, Anil AC (2010) What do barnacle larvae feed on? Implications to biofouling ecology. J Mar Biol Assoc UK 90:1241–1247

    Google Scholar 

  • Haderlie EC (1984) A brief overview of the effect of macrofouling. In: Costlow JD, Tipper RC (eds) Marine biodeterioration: an interdisciplinary study. US Naval Institute, Annapolis, MD, pp 163–166

    Google Scholar 

  • Harder T, Thiyagarajan V, Qian PY (2001) Combined effect of cyprid age and lipid content on larval settlement and metamorphosis of Balanus amphitrite Darwin. Biofouling 17:257–262

    Article  CAS  Google Scholar 

  • Harding JP (1962) Darwin’s type specimens of varieties of Balanus amphitrite. Bull Br Mus (Nat Hist) 9(7):274–296

    Google Scholar 

  • Harris VA (1990) Sessile animals of the seashore. Chapman & Hall, London

    Google Scholar 

  • Henry DP, McLaughlin PA (1975) The barnacles of the Balanus amphitrite complex (Cirripedia, Thoracica). Zoologische Verhandelingen Leiden 141:1–254

    Google Scholar 

  • Hoeg JT, Lutzen J (1985) Crustacea Rhizocephala. Marine Invertebrates of Scandinavia 6:1–92

    Google Scholar 

  • Holm ER (1990) Attachment behavior in the barnacle Balanus amphitrite amphitrite (Darwin): genetic and environmental effects. J Exp Mar Biol Ecol 135(2):85–98

    Article  Google Scholar 

  • Holmström C, Kjelleberg S (1994) The effect of external biological factors on settlement of marine invertebrate and new antifouling technology. Biofouling 8:147–160

    Article  Google Scholar 

  • Hung OS, Gosselin LA, Thiyagarajan V, Wu RSS, Qian PY (2005) Do effects of ultraviolet radiation on microbial films have indirect effects on larval attachment of the barnacle Balanus amphitrite? J Exp Mar Biol Ecol 323:16–26

    Article  Google Scholar 

  • Hung OS, Thiyagarajan V, Qian PY (2008) Preferential attachment of barnacle larvae to natural multi-species biofilms: Does surface wettability matter? J Exp Mar Biol Ecol 361:36–41

    Article  Google Scholar 

  • IMO (2001) International convention on the control of harmful anti-fouling systems on ships. In: AFS Convention, 5 October 2001, Headquarters IMO, London

    Google Scholar 

  • Jessopp M, Mulholland O, McAllen R, Johnson MP, Crowe TP, Allcock AL (2007) Coastline configuration as a determinant of structure in larval assemblages. Mar Ecol Prog Ser 352:67–75

    Article  Google Scholar 

  • Kato M, Kazuko H, Matsuda T (1960) Ecological studies on the morphological variation of a sessile barnacle, Chthamalus challengeri. II. Bull Mar Biol Stn Asamushi Tohoku Univ 10:9–17

    Google Scholar 

  • Khandeparker L, Anil AC (2007) Under water adhesive: the barnacle way. Int J Adh Adhesives 27:165–172

    Article  CAS  Google Scholar 

  • Khandeparker L, Anil AC, Raghukumar S (2002a) Factors regulating the production of different inducers in Pseudomonas aeruginosa with reference to larval metamorphosis in B. amphitrite. Aquat Microb Ecol 28(1):37–54

    Article  Google Scholar 

  • Khandeparker L, Anil AC, Raghukumar S (2002b) Exploration and metamorphosis in Balanus amphitrite Darwin (Cirripedia; Thoracica) cyprids: significance of sugars and adult extract. J Exp Mar Biol Ecol 281:77–88

    Article  Google Scholar 

  • Khandeparker L, Anil AC, Raghukumar S (2003) Barnacle larval destination: piloting possibilities by bacteria and lectin interaction. J Exp Mar Biol Ecol 289:1–13

    Article  Google Scholar 

  • Khandeparker L, Desai DV, Shirayama Y (2005) Larval development and post settlement metamorphosis of barnacle Balanus albicostatus Pilsbry and serpulid polychaete Pomatoleios kraussii Baird: impact of a commonly used antifouling biocide, Irgarol 1051. Biofouling 21(3/4):169–180

    Article  CAS  Google Scholar 

  • Khandeparker L, Anil AC, Raghukumar S (2006) Relevance of biofilm bacteria in modulating the larval metamorphosis of Balanus amphitrite Darwin. FEMS Microbiol Ecol 58:425–438

    Article  CAS  Google Scholar 

  • Kirchman DL, Ducklow HW, Mitchell R (1982) Estimates of bacterial growth from changes in uptake rates and biomass. Appl Environ Microbiol 44:1296–1307

    Google Scholar 

  • Kirchman D, Mitchell R (1984) Possible role of lectins in the settlement and metamorphosis of marine invertebrate larvae on surfaces coated with bacteria. In: Bacteriologie Marine No. Scientifique, Marseille, France, pp 173–177

    Google Scholar 

  • Kostantinou IK, Albanis TA (2004) World-wide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ Int 30:253–248

    Google Scholar 

  • Lackenby H (1962) The resistance to ships with special reference to skin friction and hull surface condition. Thomas Lowe Gray Lecture Proc Inst Mech Eng 176:1–35

    Google Scholar 

  • Lagersson NC, Garm A, Høeg JT (2003) Notes on the ultrastructure of the setae on the fourth antennulary segment of the Balanus amphitrite cyprid (Crustacea: Cirripedia: Thoracica). J Mar Biol Ass UK 83:361–365

    Article  Google Scholar 

  • Lang WH (1979) Larval development of shallow water barnacle of the Carolinas (Cirripedia, Thoracica) with keys to naupliar stages. NOAA Tech Rep (US) Natl Mar Fish Serv Circ 421:1–39

    Google Scholar 

  • Leach WE (1817) Distribution systématique de la classe Cirrpède. J Phys Chim Hist Nat 85:67–69

    Google Scholar 

  • Lindner E (1984) The attachment of macrofouling invertebrates. In: Costlow JD, Tipper RC (eds) Marine biodeterioration: and interdisciplinary study. US Naval Institute, Annapolis MD, pp 183–201

    Google Scholar 

  • Lindner E (1992) A low surface free energy approach in the control of marine Biofouling. Biofouling 6:193–205

    Article  CAS  Google Scholar 

  • Litaker W, Duke CS, Kenny BE, Ramus J (1993) Short term environmental variability and phytoplankton abundance in a shallow tidal estuary II. Spring and fall Mar Ecol Prog Ser 94:141–154

    Article  Google Scholar 

  • Liu D, Maguire RJ, Lau YL, Pacepavicius GJ, Okamura H, Aoyama I (1997) Transformation of new antifouling compound Irgarol 1051 by Phanerochaete chrysosporium. Water Res 31(9):2363–2369

    Article  CAS  Google Scholar 

  • Lucas MI, Crisp DJ (1987) Energy metabolism of eggs during embryogenesis in Balanus balanoides. J Mar Biol Ass UK 67:27–54

    Article  CAS  Google Scholar 

  • Lucas MI, Walker G, Holland DL, Crisp DJ (1979) An energy budget for the free swimming and metamorphosing larvae of Balanus balanoides (Crustacea: Cirripedia). Mar Biol 5:221–229

    Article  Google Scholar 

  • Maki JS, Rittschof D, Costlow JD, Mitchell R (1988) Inhibition of attachment of larval barnacles, Balanus amphitrite, by bacterial surface films. Mar Biol 97:199–206

    Article  Google Scholar 

  • Maki JS, Rittschof D, Schmidt AR, Snyder AG, Mitchell R (1989) Factors controlling attachment of bryozoan larvae: a comparison of bacterial films and unfilmed surfaces. Biol Bull 177:295–302

    Article  Google Scholar 

  • Maki JS, Rittschof D, Samuelsson MO, Szewzyk U, Kjelleberg S, Costlow JD, Mitchell R (1990) Effect of marine bacteria and their exopolymers on the attachment of barnacle cypris larvae. Bull Mar Sci 46:499–511

    Google Scholar 

  • Maki JS, Rittschof D, Mitchell R (1992) Inhibition of larval barnacle attachment to bacterial films: an investigation of physical properties. Microb Ecol 23:97–106

    Article  Google Scholar 

  • Matsumura K, Nagano M, Fusetani N (1998) Purification of a larval settlement-inducing protein complex (SIPC) of the barnacle, Balanus amphitrite. J Exp Zool 281:12–20

    Article  Google Scholar 

  • McEdward L (1984) Morphometric analysis of the growth and form of an echinopluteus. J Exp Mar Biol Ecol 82:259–287

    Article  Google Scholar 

  • Milne A (1990) Roughness and drag from the marine paint chemist’s viewpoint. Int Workshop on Marine Roughness and Drag, RINA London. pp 4

    Google Scholar 

  • Miron G, Walters LJ, Tremblay R, Bourget E (2000) Physiological condition and barnacle larval behavior: a preliminary look at the relationship between TAG/DNA ratio and larval substratum exploration in Balanus amphitrite. Mar Ecol Prog Ser 198:303–310

    Article  Google Scholar 

  • Mitchell R (1984) Colonization by higher organisms. In: Marshall KC (ed) Microbial adhesion and aggregation. Springer, Berlin, pp 189–200

    Chapter  Google Scholar 

  • Mitchell R, Kirchman D (1984) The microbial ecology of marine surfaces. In: Costlow JD, Tipper RC (eds) Marine Biodeterioration: An interdisciplinary Study. Naval Institute Press, Annapolis, MD, pp 49–56

    Google Scholar 

  • Mitchell R, Maki JS (1988) Microbial surface films and their influence on larval settlement and metamorphosis in the marine environment. In: Thompson M-F, Sarojini R, Nagabhushanam R (eds) Marine biodeterioration: advanced techniques applicable to the Indian Ocean. AA Balkema, Rotterdam

    Google Scholar 

  • Morse DE (1990) Recent progress in larval settlement and metamorphosis: closing the gaps between molecular biology and ecology. Bull Mar Sci 46:465–483

    Google Scholar 

  • Moyse J (1963) Comparison of the value of various flagellates and diatoms as food for barnacle larvae. J du Conseil Permanent International pour l’Exploration de la Mer 28:175–187

    Google Scholar 

  • Moyse J (1987) Larvae of lepadomorph barnacles. In: Southward AJ (ed) Crustacean Issues 5, Barnacle biology. Balkema AA, Rotterdam, pp 329–362

    Google Scholar 

  • Moyse J, Knight-Jones EW (1967) Biology of cirripede larvae. In: Proc Symp Crustacea, Ernakulam, 1965, Part 1. Marine Biological Society of India. Bangalore Press, Bangalore, pp 595–611

    Google Scholar 

  • Neal AL, Yule AB (1994) The interaction between Elminius modestus Darwin cyprids and biofilms of Deleya marina NCMB 1877. J Exp Mar Biol Ecol 176:127–139

    Article  Google Scholar 

  • Newell RC (1979) Biology of Intertidal Animals. Marine Ecological Surveys, Faversham, Kent, United Kingdom

    Google Scholar 

  • Newman WA (1974) Two new deep-sea Cirripedia (Ascothoracica and Acrothoracica) from the Atlantic. J Mar Biol Ass UK 54:437–456

    Article  Google Scholar 

  • Newman WA (1987) Evolution of cirripedes and their major groups. In: Southwards AJ (ed) Crustacean Issues 5, Barnacle biology. AA Balkema, Rotterdam

    Google Scholar 

  • Nott JA (1969) Settlement of barnacle larvae: surface structure of the antennular attachment disc by scanning electron microscopy. Mar Biol 2:248–251

    Article  Google Scholar 

  • Nott JA, Foster BA (1969) On the structure of the antennular attachment organ of the cypris larva of Balanus balanoides (L.). Phil Trans R Soc Lon (B) 256:115–134

    Article  Google Scholar 

  • Okazaki Y, Shizuri Y (2000) Structure of six cDNAs expressed specifically at cypris larvae of barnacles, Balanus amphitrite. Gene 250:127–135

    Article  CAS  Google Scholar 

  • Olivier F, Tremblay R, Bourget E, Rittschof D (2000) Barnacle settlement: Field experiments on the influence of larval supply, tidal level, biofilm quality and age on Balanus amphitrite cyprids. Mar Ecol Prog Ser 199:185–204

    Article  Google Scholar 

  • Olson RR, Olson MH (1989) Food limitations of planktotrophic invertebrate larvae: does it control recruitment success? Annu Rev Ecol Syst 20:255–274

    Google Scholar 

  • Patil JS, Anil AC (2005) Influence of diatom exopolymers and biofilms on metamorphosis in the barnacle B. amphitrite. Mar Ecol Prog Ser 301:231–245

    Article  CAS  Google Scholar 

  • Pawlik JR (1992) Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr Mar Biol Annu Rev 30:273–335

    Google Scholar 

  • Pechenik JA, Cerulli TR (1991) Influence of delayed metamorphosis on survival, growth and reproduction of the marine polychaete Capitella Sp I. J Exp Mar Biol Ecol 151:17–27

    Article  Google Scholar 

  • Pechenik JA, Rittschof D, Schmidt AR (1993) Influence of delayed metamorphosis on survival and growth of juvenile barnacle Balanus amphitrite. Mar Biol 115:287–294

    Article  Google Scholar 

  • Pérez M, Blustein G, García M, del Amo B, Stupak M (2006) Cupric tannate: a low copper content antifouling pigment. Prog Org Coat 55:311–315

    Article  CAS  Google Scholar 

  • Pineda J (1994) Internal tidal bores in the nearshore: warm-water fronts, seaward gravity currents and the onshore transport of neustonic larvae. J Mar Res 52:427–458

    Article  Google Scholar 

  • Pineda J (2000) Linking larval settlement to larval transport: assumptions, potentials and pitfalls. Oceanog East Pacific 1:84–105

    Google Scholar 

  • Pineda J, Hare J, Sponaugle S (2007) Larval transport and dispersal and consequences for population connectivity. Oceanography 20:22–39

    Article  Google Scholar 

  • Pitombo FB (2004) Phylogenetic analysis of the Balanidae (Cirripedia, Balanomorpha). Zool Scr 33:261–276

    Article  Google Scholar 

  • Pryor MGM (1962) Sclerotization. Comp Biochem 4:371–396

    CAS  Google Scholar 

  • Qian P-Y, Thiyagarajan V, Lau SCK, Cheung SCK (2003) Relationship between bacterial community profile in biofilm and attachment of the acorn barnacle Balanus amphitrite. Aquat Microb Ecol 33:225–237

    Article  Google Scholar 

  • Rajagopal S, Venugopalan VP, Nair KVK, Azariah J (1991) Biofouling and its control in a tropical coastal power station: a case study. Biofouling 3:325–338

    Article  CAS  Google Scholar 

  • Rittschof D (1985) Oyster drills and the frontiers of chemical ecology: Unsettling ideas. Am Malacol Bull Spec Ed 1:111–116

    Google Scholar 

  • Rittschof D, Bonaventura J (1986) Macromolecular cues in marine systems. J Chem Ecol 12:1013–1023

    Article  CAS  Google Scholar 

  • Rittschof D, Branscomb ES, Costlow JD (1984) Settlement and behavior in relation to flow and surface in larval barnacles, Balanus amphitrite Darwin. J Exp Mar Biol Ecol 82:131–146

    Article  Google Scholar 

  • Rittschof D, Maki J, Mitchell R, Costlow JD (1986) Ion and neuropharmacological studies of barnacle settlement. Neth J Sea Res 20:269–275

    Article  CAS  Google Scholar 

  • Rittschof D, Forward RB Jr, Cannon G, Welch JM, McClary M Jr, Holm ER, Clare AS, Conova S, McKelvey LM, Bryan P, Van Dover CL (1998) Cues and context: Larval responses to physical and chemical cues. Biofouling 12(1–3):31–44

    Article  Google Scholar 

  • Rittschof D, Lai Ch, Kok LM, Teo SL (2003) Pharmaceuticals as antifoulants: concept and principles. Biofouling 19:207–212

    Article  CAS  Google Scholar 

  • Rogers FL (1949) Three new subspecies of Balanus amphitrite from California. J Entomol Zool 41(2):23–32

    Google Scholar 

  • Ross A, Newman WA (1969) A coral-eating barnacle. Pacific Sci 23:252–256

    Google Scholar 

  • Roughgarden J, Gaines S, Possingham H (1988) Recruitment dynamics in complex life cycles. Science 241:1460–1466

    Article  CAS  Google Scholar 

  • Satpathy KK (1990) Biofouling control measures in power plant cooling systems: A brief overview. In: Nair KVK, Venugopalan VP (eds) Marine biofouling and power plants. Proceedings of the meeting on marine biodeterioration with reference to power plant cooling systems, IGCAR, Kalpakkam, India

    Google Scholar 

  • Satuito CG, Shimizu K, Natoyama K, Yamazaki M, Fusetani N (1996) Age-related settlement success by cyprids of the barnacle Balanus amphitrite, with special reference to consumption of cyprid storage protein. Mar Biol 127:125–130

    Article  Google Scholar 

  • Scheltema RS (1974) Biological interactions determining larval settlement of marine invertebrates. Thalass Jugosl 10(1/2):263–296

    Google Scholar 

  • Shatoury HH (1958) A freshwater mutant of Balanus amphitrite. Nature 181:790–791

    Article  Google Scholar 

  • Somero GN (2002) Thermal physiology and vertical zonation of intertidal animals: optima, limits, and costs of living. Integr Comp Biol 42:780–89

    Article  Google Scholar 

  • Southward AJ (1975) Intertidal and shallow water Cirripedia of the Caribbean. Stud Fauna Curaçao Carib Islands 46:1–53

    Google Scholar 

  • Starr M, Himmelman JH, Therriault JC (1990) Direct coupling of marine invertebrate spawning with phytoplankton blooms. Science 247:1071–1074

    Article  CAS  Google Scholar 

  • Starr M, Himmelman JH, Therriault JC (1991) Coupling of nauplii release in barnacles with phytoplankton blooms: a parallel strategy to that of spawning in urchins and mussels. J Plankt Res 13(3):561–571

    Article  Google Scholar 

  • Stone CJ (1986) The effects of variations in diet, temperature and salinity on the development of cirripede anuplii. Ph. D. thesis, University of Wales, UK, p 340

    Google Scholar 

  • Stone CJ (1988) Test of sequential feeding regimes for larvae of Elminius modestus Darwin (Cirripedia: Balanomorpha). J Exp Mar Biol Ecol 115:41–51

    Article  Google Scholar 

  • Strathmann RR, Jahn TL, Fonseca JRC (1972) Suspension feeding by marine invertebrate larvae: clearance of particles from suspension by ciliated bands of a rotifer, pluteus, and trochophore. Biol Bull (Woods Hole, Mas) 142:505–519

    Article  Google Scholar 

  • Swain G, Anil AC, Baier RE, Chia FS, Conte E, Cook A, Hadfield M, Haslbeck E, Holm E, Kavanagh C, Kohrs D, Kovach B, Lee C, Mazzella L, Meyer AE, Qian PY, Sawant SS, Schultz M, Sigurdsson J, Smith C, Soo L, Terlizzi A, Wagh A, Zimmerman R, Zupo V (2000) Biofouling and barnacle adhesion data for fouling-release coatings subject to static immersion at seven marine sites. Biofouling 16(2–4):331–344

    Article  CAS  Google Scholar 

  • Szewzyk U, Holmström C, Wrangstadh M, Samuelsson M-O, Maki JS, Kjelleberg S (1991) Relevance of the exopolysaccharide of marine Pseudomonas sp. strain S9 for the attachment of Ciona intestinalis larvae. Mar Ecol Prog Ser 75:259–265

    Article  Google Scholar 

  • Thiyagarajan V, Venugopalan VP, Subramoniam T, Nair KVK (1996) Rearing of barnacle Balanus reticulates Utinomi larvae using the diatom Chaetoceros wighami as food. Ind J Mar Sci 25:365–367

    Google Scholar 

  • Thiyagarajan V, Harder T, Qian PY (2003) Effects of TAG/DNA ratio and age of cyprids on post-metamorphic growth and survival in the barnacle Balanus amphitrite. J Mar Bio Assoc UK 83:83–88

    CAS  Google Scholar 

  • Thiyagarajan V, Hung OS, Chiu JMY, Wu RSS, Qian PY (2005) Growth and survival of juvenile barnacle Balanus amphitrite: interactive effects of cyprid energy reserve and habitat. Mar Ecol Prog Ser 299:229–237

    Article  Google Scholar 

  • Thiyagarajan V, Lau SCK, Cheung SCK, Qian PY (2006) Cypris habitat selection facilitated by microbial films influences the vertical distribution of subtidal barnacle Balanus trigonus. Microb Ecol 51:431–440

    Article  Google Scholar 

  • Thiyagarajan V, Pechenik JA, Gosselin LA, Qian PY (2007) Juvenile growth in barnacles: combined effect of delayed metamorphosis and sub-lethal exposure of cyprids to low salinity stress. Mar Ecol Prog Ser 344:173–184

    Article  Google Scholar 

  • Thorson G (1950) Reproductive and larval ecology of marine bottom invertebrates. Biol Rev 25:1–45

    Article  Google Scholar 

  • Turley PA, Fenn RJ, Ritter JC, Callow ME (2005) Pyrithiones as antifoulants: environmental fate and loss of toxicity. Biofouling 21:31–40

    Article  CAS  Google Scholar 

  • Utinomi H (1967) Comments on some new and already known cirripedes with amended taxa, with special reference to the parietal structure. Publ Seto Mar Biol Lab 15(3):199–237

    Google Scholar 

  • Vargas CA, Manriquez PH, Navarrete SA (2006) Feeding larvae of intertidal invertebrates: assessing their position in pelagic food webs. Ecology 87(2):444–457

    Article  Google Scholar 

  • Venugopalan VP, Nair KVK (1990) Effects of a biofouling community on cooling water characteristics of a coastal power plant. Ind J Mar Sci 19:294–296

    Google Scholar 

  • Vishwakiran Y, Anil AC (1999) Record of imposex in Cronia konkanensis (Gastropoda: Muricidae) from Indian waters. Mar Environ Res 48(2):123–130

    Article  Google Scholar 

  • Wagh AB, Bal DV (1971) Observations on systematics of sessile barnacles from West coast of India. J Bombay Nat Hist Soc 71(1):109–123

    Google Scholar 

  • Walker G (1971) A study of the cement apparatus of the cypris larva of the barnacle Balanus balanoides. Mar Biol 9:205–212

    Article  Google Scholar 

  • Walker G (1980) A study of the oviducal glands and ovisacs of Balanus balanoides (L), together with comparative observations on the ovisacs of Balanus hameri (Ascanius) and the reproductive biology of the two species. Phil Trans R Soc Lond (B) 191:147–162

    Article  Google Scholar 

  • Walker G, Yule AB (1984) Temporary adhesion of the barnacle cyprid: the existence of an antennular adhesive secretion. J Mar Biol Ass UK 64:679–686

    Article  Google Scholar 

  • Walker G, Yule AB, Nott JA (1987) Structure and function in balanomorph larvae. In: Southward AJ (ed) Crustacean Issues 5, Barnacle biology. Balkema AA, Rotterdam, pp 307–328

    Google Scholar 

  • Wieczorek SK, Clare AS, Todd CD (1995) Inhibitory and facilitatory effects of microbial films on settlement of Balanus amphitrite amphitrite larvae. Mar Ecol Prog Ser 119:221–228

    Article  Google Scholar 

  • Wiegemann M, Waterman B (2003) Peculiarities of barnacle adhesive cured on non-stick surfaces. J Adhesion Sci Technol 17:1957–1977

    Article  CAS  Google Scholar 

  • Wiegemann M, Watermann B (2004) The impact of desiccation on the adhesion of barnacles attached to non-stick coatings. Biofouling 20:25–45

    Article  Google Scholar 

  • Yamaguchi T (1977) Taxonomic studies on some fossil and recent Japanese Balanoidea. Trans Proc Palaeont Soc Japan NS No 107:135–160

    Google Scholar 

  • Yamamoto HA, Tachibana A, Matsumura K, Fusetani N (1995) Protein kinase C (PKC) signal transduction system involved in larval metamorphosis of the barnacle, Balanus amphitrite. Zool Sci 12:391–396

    Article  CAS  Google Scholar 

  • Yule AB, Walker G (1984) The temporary adhesion of barnacle cyprids: effects of some differing surface characteristics. J Mar Biol Assoc UK 64:429–439

    Article  Google Scholar 

  • Yule AB, Walker G (1985) Settlement of Balanus balanoides: the effect of cyprid antennular secretion. J Mar Biol Ass UK 65:707–712

    Article  Google Scholar 

  • Yule AB, Walker G (1987) Adhesion in barnacles. In: Southward AJ (ed) Crustacean Issues 5, Barnacle biology. Balkema AA, Rotterdam, pp 389–402

    Google Scholar 

  • Zullo VA (1979) Thoracican Cirripedia of the lower Pliocene Pancho Rico Formation, Salina Valley, Monterey Country, California. Contrib Sci Los Angeles Co Mus 303:1–13

    Google Scholar 

  • Zullo VA (1982) Arcoscalpellum Hoek and Solidobalanus Hoek (Cirripedia, Thoracica) from the Paleogene of Pacific Country Washington, with a description of new species of Arcoscalpellum. Contrib Sci Los Angeles Co Mus 336:1–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arga C. Anil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Anil, A.C., Desai, D.V., Khandeparker, L., Gaonkar, C.A. (2012). Barnacles and Their Significance in Biofouling. In: Rajagopal, S., Jenner, H., Venugopalan, V. (eds) Operational and Environmental Consequences of Large Industrial Cooling Water Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1698-2_5

Download citation

Publish with us

Policies and ethics