Skip to main content
Log in

Inhibition of attachment of larval barnacles, Balanus amphitrite, by bacterial surface films

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Films of bacteria on solid substrata can positively or negatively influence the attachment of marine invertebrate larvae. Effects of marine bacteria on the attachment of cypris larvae of the barnacle Balanus amphitrite Darwin were examined in the laboratory. Bacteria, grown to mid-exponential phase and allowed to adsorb irreversibly to polystyrene petri dishes, attached in densities of 107 cells cm-2. Assays (22h) were used to compare the effects of adsorbed cells of 18 different bacterial species on larval barnacle attachment. Most of the adsorbed bacteria either inhibited or had no effect on larval attachment compared to clean surfaces. Experiments testing the effect of larval age on barnacle attachment were conducted with six species of bacteria and showed that older larvae attached in higher percentages to clean surfaces and that bacterial films generally inhibited larval attaschment. Both the species of bacteria and the in situ age of the adsorbed bacteria affected barnacle attachment response: older films of Deleya (Pseudomonas) marina were more inhibitory. Bacterial extracellular materials may be involved in the inhibitory process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Baumann, P., Baumann, L., Mandel, M. (1971). Taxonomy of marine bacteria: the genus Beneckea. J. Bact. 107: 268–294

    Google Scholar 

  • Baumann, L., Baumann, P., Mandel, M., Allen, R. D. (1972). Taxonomy of aerobic marine eubacteria. J. Bact. 110: 402–429

    Google Scholar 

  • Baumann, L., Bowditch, R. D., Baumann, P. (1983). Description of Deleya gen. nov. created to accomodate the marine species Acaligenes aestus, A. pacificus, A. cupidus, A. venustus, and Pseudomonas marina. Int. J. Syst. Bact. 33: 793–802

    Google Scholar 

  • Bishop, M. W. H. (1950). Distribution of Balanus amphitrite Darwin var. denticulata Broch. Nature, Lond. 165: 409–410

    Google Scholar 

  • Brancato, M. S., Woollacott, R. M. (1982). Effect of microbial films on settlement of bryozoan larvae (Bugula simplex, B. stolonifera, and B. turrita). Mar. Biol. 71: 51–56

    Google Scholar 

  • Branscomb, E. S., Rittschof, D. (1984). An investigation of low frequency sound waves as a means of inhibiting barnacle settlement. J. exp. mar. Biol. Ecol. 79: 149–154

    Google Scholar 

  • Cobet, A. B., Wirsen, C. Jr. Jones, G. E. (1970). The effect of nickel on a marine bacterium, Arthrobacter marinus sp. nov. J. gen. Microbiol. 62: 159–169

    Google Scholar 

  • Costlow, J. D. Jr. Bookhout, C. G. (1958). Larval development of Balanus amphitrite var. denticulata Broch reared in the laboratory. Biol. Bull. mar. biol. Lab., Woods Hole 114: 284–295

    Google Scholar 

  • Crisp, D. J. (1984). Overview of research on marine invertebrate larvae, 1940–1980. In: Costlow, J. D., Tipper, R. C. (eds.) Marine biodeterioration: an interdisciplinary study. Naval Institute Press, Annapolis, p. 103–126

    Google Scholar 

  • Crisp, D. J., Meadows, P. S. (1962). The chemical basis of gregariousness in cirripedes. Proc. R. Soc. Lond. Ser. B 156: 500–520

    Google Scholar 

  • Crisp, D. J., Meadows, P. S. (1962). Adsorbed layers: the stimulus to settlement in barnacles. Proc. R. Soc. Lond. Ser. B 158: 364–387

    Google Scholar 

  • Crisp, D. J., Molesworth, A. H. N. (1951). Habitat of Balanus amphitrite var. denticulata in Britain. Nature, Lond. 167: 489–490

    Google Scholar 

  • Crisp, D. J., Walker, G., Young, G. A., Yule, A. B. (1985). Adhesion and substrate choice in mussel and barnacles. J. Coll. Interface Sci. 104: 40–50

    Google Scholar 

  • Daley, R. J., Hobbie, J. E. (1975). Direct counts of aquatic bacteria by a modified epifluorescence technique. Limnol. Oceanogr. 20: 875–882

    Google Scholar 

  • Fletcher, M. (1977). The effects of culture concentration and age, time, and temperature on bacterial attachment to polystyrene. Can. J. Microbiol. 23: 1–6

    Google Scholar 

  • Fletcher, M., Loeb, G. I. (1979). Influence of substratum characteristics on the attachment of a marine pseudomonas to solid surfaces. Appl. envir. Microbiol. 37: 67–72

    Google Scholar 

  • Fletcher, M. Marshall, K. C. (1982). Are solid surfaces of ecological significance to aquatic bacteria? Adv. microb. Ecol. 6: 199–236

    Google Scholar 

  • Gherna, R. L. (1981). Preservation. In: Gerhard, P., Murray, R. G. E., Costilow, R. N., Nester, E. W., Wood, W. A., Krieg, N. R., Phillips, G. B. (eds.) Manual of methods for general microbiology. Washington, D.C., Am. Soc. Microbiol. p. 208–217

    Google Scholar 

  • Harris, J. E. (1946). Report on anti-fouling research, 1942–1944. J. Iron Steel Inst. 154: 297–334

    Google Scholar 

  • Hudon, C., Bourget, E., Legendre, P. (1983) An integrated study of the factors influencing the choice of the settling site of Balanus crenatus cyprid larvae. Can. J. Fish. aquat. Sci. 40: 1186–1194

    Google Scholar 

  • Kirchman, D., Graham, S., Reish, D., Mitchell, R. (1982a). Bacteria induce settlement and metamorphosis of Janua (Dexiospira) brasiliensis Grube (Polychaeta: Spirorbidae). J. exp. mar. Biol. Ecol. 56: 153–163

    Google Scholar 

  • Kirchman, D., Graham, S., Reish, D., Mitchell, R. (1982b). Lectins may mediate in the settlement and metamorphosis of Janua (Dexiospira) brasiliensis Grube (Polychaeta: Spirorbidae). Mar. Biol. Lett. 3: 131–142

    Google Scholar 

  • Knight-Jones, E. W. (1951). Gregariousness and some other aspects of the setting behaviour of Spirorbis. J. mar. biol. Ass. U. K. 30: 201–222

    Google Scholar 

  • Larman, V. N., Gabbott, P. A., East, J. (1982). Physico-chemical properties of the settlement factor proteins from the barnacle Balanus balanoides. Comp. Biochem. Physiol. 72B: 329–338

    Google Scholar 

  • Lee, J. V., Shread, P., Furniss, A. L., Bryant, T. N. (1981). Taxonomy and description of Vibrio fluvialis sp. nov. (Synonym Group F Vibrios, Group EF6). J. appl. Bact. 50: 73–94

    Google Scholar 

  • Leifson, E. (1963). Determination of carbohydrate metabolism of marine bacteria. J. Bact. 85: 1183–1184

    Google Scholar 

  • Lewis, C. A. (1978). A review of substratum selection in free-living and symbiotic cirripeds. In: Chia, F. S., Rice, M. E. (eds.) Settlement and metamorphosis of marine invertebrate larvae. Elsevier, New York, p. 207–218

    Google Scholar 

  • Marshall, K. C. (1976). Interfaces in microbial ecology. Harvard University Press, Cambridge, 156 pp.

    Google Scholar 

  • Marshall, K. C., Stout, R., Mitchell, R. (1971). Mechanism of the initial events in the sorption of marine bacteria to surfaces. J. gen. Microbiol. 68: 337–348

    Google Scholar 

  • Meadows, P. S., Williams, G. B. (1963). Settlement of Spirorbis borealis Daudin larvae on surfaces bearing microorganisms. Nature, Lond. 198: 610–611

    Google Scholar 

  • Mihm, J. W., Banta, W. C., Loeb, G. I. (1981). Effects of adsorbed organic and primary fouling films on bryozoan settlement. J. exp. mar. Biol. Ecol. 54: 167–179

    Google Scholar 

  • Mitchell, R., Kirchman, D. (1984). The microbial ecology of marine surfaces. In: Costlow, J. D., Tipper, R. C. (ed.) Marine biodeterioration: an interdisciplinary study. Naval Institute Press, Annapolis, p. 49–56

    Google Scholar 

  • Muller, W. A. (1973). Induction of metamorphosis by bacteria and ions in the planulae of Hydractinia echinata; an approach to the mode of action. In: Tokioka, T., Nishimura, S. (ed.) Proc. 2nd Int. Symp. on Cnidaria (Recent trends in coelenterate biology). Publ. Seto Mar. Biol. Lab., no. 20, pp. 195–208

  • Neumann, R. (1979). Bacterial induction of settlement and metamorphosis in the planula larvae of Cassiopea andromeda (Cnidaria: Scyphozoa, Rhizostomeae). Mar. Ecol. Prog. Ser. 1: 21–28

    Google Scholar 

  • Nott, J. A., Foster, B. A. (1969). On the structure of the antennular attachment organ of the cypris larva of Balanus balanoides (L.). Philas. Trans. R. Soc. Lond. Ser. B 256: 115–134

    Google Scholar 

  • Reichelt, J. L., Baumann, P., Baumann, L. (1976) Study of genetic relationships among marine species of the genera Beneckea and Photobacterium by means of in vitro DNA/DNA hybridization. Arch. Microbiol. 110: 101–120

    Google Scholar 

  • Rittschof, D. (1985). Oyster drills and the frontiers of chemical ecology: unsettling ideas. Am. malacol. Bull., Spec. Ed. No. 1: 111–116

  • Rittschof, D., Branscomb, E. S., Costlow, J. D. (1984). Settlement and behavior in relation to flow and surface in larval barnacles, Balanus amphitrite Darwin. J. exp. mar. Biol. Ecol. 82: 131–146

    Google Scholar 

  • Rittschof, D., Hooper, I. R., Branscomb, E. S., Costlow, J. D. (1985). Inhibition of barnacle settlement and behavior by natural products from whip corals, Leptogorgia virgulata (Lamarck 1815). J. Chem. Ecol. 11: 551–563

    Google Scholar 

  • Rittschof, D., Maki, J., Mitchell, R., Costlow, J. D. (1986). Ion and neuropharmacological studies of barnacle settlement. Neth. J. Sea Res. 20: 269–275

    Google Scholar 

  • Sakazaki, R. (1968). Proposal of Vibrio alginolyticus for the biotype 2 of Vibrio parahaemolyticus. Japan. J. Med. Sci. Biol. 21: 359–362

    Google Scholar 

  • Schmahl, G. (1985). Bacterially induced stolon settlement in the Scyphopolyps of Aurelia aurita (Cnidaria, Scyphozoa). Helgoländer Meeresunters. 39: 33–42

    Google Scholar 

  • Seber, G. A. F. (1977). Linear regression analysis. John Wiley and Sons, New York

    Google Scholar 

  • Sutherland, I. W. (1983). Microbial exopolysaccharides — their role in microbial adhesion in sequeous system. CRC Crit. Rev. Microbiol. 10: 173–201

    Google Scholar 

  • Tighe-Ford, D. J., Power, M. J. D., Vaile, D. C. (1970). Laboratory rearing of barnacle larvae for antifouling research. Helgoländer wiss. Meeresunters. 20: 393–405

    Google Scholar 

  • Visscher, J. P. (1928). Nature and extent of fouling of ships' bottoms. Bull. U.S. Bur. Fish. 43: 193–252

    Google Scholar 

  • Walker, G., Yule, A. B. (1984). Temporary adhesion of the barnacle cyprid: the existence of an antennular adhesive secretion. J. mar. biol. Ass. U. K. 64: 679–686

    Google Scholar 

  • Weiner, R. M., Segall, A. M., Colwell, R. R. (1985). Characterization of a marine bacterium associated with Crassostrea virginica (the Eastern Oyster). Appl. Envir. Microbiol. 49: 83–90

    Google Scholar 

  • Yaphe, W. (1957). The use of agarase from Pseudomonas atlantica in the identification of agar in marine algae (Rhodophyceae). Can. J. Microbiol. 3: 987–993

    Google Scholar 

  • Yule, A. B., Crisp, D. J. (1983). Adhesion of cypris larvae of the barnacle, Balanus balanoides, to clean and arthropodin treated surfaces. J. mar. biol. Ass. U. K. 63: 261–271

    Google Scholar 

  • Zar, J. H. (1984): Biostatistical analysis, 2nd ed., 718 pp. Prentice-Hall, Inc., Englewood Cliffs

    Google Scholar 

  • Zobell, C. E., Upham, H. C. (1944). A list of marine bacteria including descriptions of sixty new species. Bull. Scripps Inst. Oceanog. 5: 239–292

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Lawrence, Tampa

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maki, J.S., Rittschof, D., Costlow, J.D. et al. Inhibition of attachment of larval barnacles, Balanus amphitrite, by bacterial surface films. Mar. Biol. 97, 199–206 (1988). https://doi.org/10.1007/BF00391303

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00391303

Keywords

Navigation