Asymptotic Normality of Nonparametric Tests for Independence

  • F. H. Ruymgaart
  • G. R. Shorack
  • W. R. van Zwet
Open Access
Chapter
Part of the Selected Works in Probability and Statistics book series (SWPS)

Abstract

Asymptotic normality of linear rank statistics for testing the hypothesis of independence is established under fixed alternatives. A generalization of a result of Bhuchongkul [I) is obtained both with respect to the conditions concerning the orders of magnitude of the score functions and with respect to the smoothness conditions on these functions.

Keywords

Bran 

Reference

  1. 1.
    [I] BHUCHONGKUL, S . (1964 ). A class of nonparametric tests for independence in bivariate populations. Ann. Math. Statist 35 138-149Google Scholar
  2. 2.
    BILLIN G SLEY, P. ( 1968 ). Convergence of Probability Measure s Wiley, New YorkGoogle Scholar
  3. 3.
    CHE RNOFF, H . and I. R . SAVAGE (1958). Asymptotic no rmality and efficiency of certain nonparametric test statistics. Ann. Math. Statist 29 972-994Google Scholar
  4. 4.
    FELLER, W. (1957). An Introduction to Probability Theory and its Applications 1 Wiley, New YorkGoogle Scholar
  5. 5.
    GuMBEL, E. J (1958). Multivariate distributions with given margins and analytical examples. Bull. Inst. Internat. Statist 37-3 363 - 373Google Scholar
  6. 6.
    HAJEK, J and Z. SIDAK (1967) . Theory of Rank Tests Academic Press, New YorkGoogle Scholar
  7. 7.
    JoGDEO, K (1968). Asymptotic normality in nonparametric methods. Ann. Math . Statist 39 905 - 922CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    KIEFER, J . (1%1 ) On large deviations of the empiric df of vector chance variables and a law of the iterated logarithm. Pacific J . Math 11 649 - 660Google Scholar
  9. 9.
    LEHMANN, E . L. (1953 ). The power of rank tests. Ann. Math . Statist 24 23 - 43CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    PYKE, R and G. R SHORACK (1968). Weak convergence of a two-sample empirical process and a new approach to Chernoff-Savage theorems. Ann. Math. Statist 39 755-771Google Scholar
  11. 11.
    SHORACK, G . R. (1972 ). Functions of order statistics . Ann. Math. Statist 43 412- 427CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    SKOROKHOD, A. V. (1956 ). Limit theorems for stochastic processes. Theor . Probability Appl 1 261 - 290Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • F. H. Ruymgaart
    • 1
    • 2
  • G. R. Shorack
    • 1
    • 2
  • W. R. van Zwet
    • 1
    • 2
  1. 1.Mathematisch Centrum, AmsterdamAmsterdamThe Netherlands
  2. 2.University of LeidanLeidanThe Netherlands

Personalised recommendations