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Asymptotic normality of linear rank statistics for testing the hypo­
thesis of independence is established under fixed alternatives. A generali­
zation of a result of Bhuchongkul [I) is obtained both with respect to the 
conditions concerning the orders of magnitude of the score functions and 
with respect to the smoothness conditions on these functions. 

1. Introduction. For each n let (X~> Y1), • •• , (X,., Y,.) be a random sample from 
a continuous bivariate distribution function (df) H(x, y) having marginal dfs 
F(x) and G(y). The bivariate empirical df based on this sample is denoted by 
H,. . With respect to then random variables (rvs) X;( Y;) corresponding to the 
first (second) coordinates, the empirical df is denoted by F,.(G,.), the ith order 
statistic by X;,.( Y;,.) and the rank of X;( Y;) by R;(Q;)· All samples are defined 
on a single probability space (Q, S/'; P). 

The rank statistics most commonly used to test the independence hypothesis 
H = F.G, are of the linear type 

T.,. = n- 1 ~ i= 1 a,.(R;)b,.(Q;) , 

where a,.(i), b,.(i) are real numbers for i = I, .. . , n (see Hajek and Sidak [6]). 
A suitably standardized version of T,. will be (see also Bhuchongkul [I]) 

( 1.1) 

here 

( 1.2) J,.(s) = a,.(i) , K,.(s) = b,.(i) , 

for (i - I )/n < s ;£ ifn and i = I, . · ·, n, and 

( 1.3) f1 = SS J(F)K(G) dH, 

for some functions J and K on (0, I) that can be thought of as limits of the score 
functions J,. and K,. . 

In order to summarize the main results of this paper let us introduce the 
function 

(1.4) r = [/(1 - l)J-' on (0, 1), 

where I is the identity function on the unit interval. Under the hypothesis and 
under contiguous alternatives, asymptotic normality of (1.1) may be proved for 
score functions J and K of order r!- o for some o > 0 (see Hajek and Sidak [6]). 
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Jogdeo [7] establishes asymptotic normality under the hypothesis of a statistic 
more general than T, ; the growth condition on his score functions in the case 
ofT, is r!- o. By an approach analogous to that of Chernoff and Savage [3] for 
the two-sample problem, Bhuchongkul [I] proves asymptotic normality under 
fixed alternatives provided the score functions are of the order log r(seeSection 2). 
The main purpose of this paper is to relax these conditions to ri- o in general 
and ,~- iJ for a special class of dfs H. 

In Theorem 2.I the asymptotic normality of ( l.I) is established for rather 
smooth score functions with orders of magnitude not exceeding ra and rb, where 
the numbers a and b satisfy the relations a = (! - o)jp0 and b = (! - o)fq0 for 
some 0 < o < ! and some p0, q0 > I with p 0- 1 + q0- 1 = I. No condition other 
than continuity is imposed on the df H. The theore~ is stronger than Theorem 1 

of Bhuchongkul [1]. The proof is based on Holder's inequality in the form 

(1.5) ~ ~ lszS<F)¢(G)I dH ~ [~ lszSIP dfJI' pn l¢1q dfJI' q, 

where ¢ and ¢ are funct ions on (0, I) , dl denotes Lebesgue measure restricted 
to the unit interval and p, q > 1 satisfy p-1 + q-1 = I . 

Theorem 2.2 gives asymptotic normality of ( 1. 1) under much weaker condi­
tions on the score functions . Here these functions are allowed to be of order 
ra and rb, where a= b = ! - o for some 0 < o < ! · The price for this is a 
condition on the df H, keeping it in some sense similar to the null hypothesis. 
This condition is 

( 1.6) dH ~ C[r(F)r(G)] i! i2 dFdG, 

with fixed constants C ~ 1 and 0 < o < !· Mathematically, ( 1.6) allows a direct 
factorization of the left-hand integral in (1.5) which is more efficient than 
Holder's inequality. Intuitively, this condition prevents the large (small) X's 
from occurring in the same pair as large (small) Y's with too high a probability . 
Condition (1.6) trivially holds under the null hypothesis. More generally it is 
also satisfied if H can be written as a polynomial in its marginals F and G. This 
class of distributions was introduced by Lehmann [9] and the special case where 
H = FG[l +a( I - F)(1 - G)] for -1 ~ a ~ 1 was considered by Gumbel [5]. 
Finally ( 1.6) holds for all bivariate normal distributions with a sufficiently small 
correlation coefficient (use Lemma 2 on page I66 of Feller [4] to see that (1.6) 
holds for a correlation coefficient between -o/(2- o) and of(2 - o)). 

2. Statement of the theorems. Each of the theorems below establishes the 
asymptotic normality 

(2.I) as n --)o oo , 

of ( 1. I); here p and a 2 are finite and are given by ( l. 3) and ( 3. 1 0) respectively. 
Let ,,::;r denote the class of all continuous bivariate dfs H , and let J'C"co denote 

the subclass that satisfies ( 1 .6) for fixed C ~ I and 0 < o < !· 
To prove (2.I) for general H in P'C' we require a strong boundedness condition 

on the score functions. 
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AssuMPTION 2.1. The functions J and K are continuous on (0, 1 ); each is 

differentiable except at an at most finite number of points, and in the open in­

tervals between these points the derivatives are continuous. The functions Jn, 

K n, J, K satisfy [Jn[ ~ Dra, [Kn[ ~ Drb and 

for i = 0, 1 , 

where defined on (0, 1 ). Here D is a positive constant and a and b satisfy 

(2.2) a = (t - i5)/Po, b = (i - i5)Jqo 

for some 0 < i5 < t and some p0 , q0 > 1 with p 0- 1 + q0- 1 = 1. 
In proving (2 . 1) for the more restrictive class ,'?2'/c,J we only require a weak 
boundedness condition on the score functions. 

AssuMPTION 2.2. Assumption 2.1 holds with 

(2.3) 

for some 0 < i5 < t· 
We also need a condition on the convergence of Jn, Kn to J, K. Define 

(2.4) 

(2.5) 

where 

(2.6) 

(2.7) Gn * = [nj(n + 1)]Gn , 

AssuMPTION 2.3. Either (a) Bon ----> v 0 as n----> =, or (b) Btn ---->v 0 as n ----> = · 
This assumption is very general, but may occasionally be difficult to verify. 

However, most examples are special cases of Remarks 2.1 and 2.2 below . 

REMARK 2.1. If the scores of (1.2) satisfy an(i) = J(ij(n + 1)) and bn(i) = 
K(ij(n + 1)) for 1 ~ i ~ n for some functions J and K, then Assumption 2.3 (b) 

holds uniformly for H in ~?c. ~ (In this case B0*n = 0 for all n.) 

REMARK 2.2 . Suppose that J and K are increasing and twice differentiable on 
(0, 1 ), and that [J1il[ ~ Dra+i and [K1i l[ ~ Drb+i for i = 0, 1, 2 where D > 0 and 

a and b satisfy (2.2). Let the scores an(i) and bn(i) of (1.2) be the expectations 
of the ith order statistics of samples of size n from populations whose dfs are 

the inverse functions of J and K respectively. Then Assumption 2.1 holds and 

Assumption 2.3 (a) holds uniformly for all H in ,')/'. (This statement generalizes 

Theorem 2 of [1] and the proof may be given in the same way. It relies mainly 

on the fact that L:; f,;/ [an(i) - J(ijn)[ = O(na) and L: i~11 [bn(i) - K(ijn)[ = O(nb), 

which follows from formulas (7 .14) and (7 .24) of [3] with a = a and a = b 

respectively.) 

THEOREM 2.1 . If His in ,-')[ and if Assumptions 2.1 and 2.3 are satisfied, then 

the asymptotic normality (2.1) holds. Given any subclass ,/l ' of ,')~· such that As-
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sumption 2.3 holds uniformly for H in .. /;; ·· 1 and such that a 2 = a 2(H) is bounded 

away from 0 on ,')t.?l, the convergence in (2 . 1) is uniform for H in ,'){: ·1 • 

Note that (2.2) is satisfied if a = b = t - c for some 0 < c < t (take p0 = 
q0 = 2 and o = 2c). Thus Theorem 2.I allows a rate of growth r*- ' for the score 
functions J and K and r h for their derivatives. In Theorem 1 of [I] these rates 

are r il-' and r respectively; in fact the latter condition reduces the rate for J and 
K to log r. Moreover in [ 1] the score functions are assumed to be twice dif­
ferentiable throughout the unit interval. 

THEOREM 2.2. Fix C ~ I and 0 < o < t· If His in ,/2~,, and if Assumptions 

2.2 and 2. 3 are satisfied, then the asymptotic normality (2. I) holds. Given any sub­

class /)c'(:6 of ,?,;?'.?ca such that Assumption 2.3 holds uniformly for H in ./2 ~a and 

such that a 2 = a 2( H) is bounded away from 0 on ,/C'(: 6 , the convergence in (2.1) is 

uniform for H in ,/c;~, . 

3. Proof of the theorems: Asymptotic normality ofthe leading terms. Let F- 1(s) = 
inf {x: F(x) ~ s} and G- 1(t) = inf {y: G(y) ~ t}; these definitions imply F(F- 1) = 
G(G- 1) = /. The random functions F,.(F- 1 ) and G,.(G-1) are with probability 1 
the empirical dfs of the sets of independent uniform (0, I) rvs F(X1), ••• , F(X,.) 
and G( Y1), • · ., G( Y,. ) respectively . Define the empirical processes U,. = 
n~ [F"(F- 1 ) - /] and V,. = n~ [G,.(G- 1 ) - /] on [0, 1 ]. With probability 1 these 
processes satisfy U,.(F) == n~(F,. - F) and V,.(G) = nl(G,. - G) on ( - oo , oo). All 
of the above remarks follow from the fact that 

(3.1) P(0 0) = P({ill: F,.(F- 1(F)) = F,. , G,.(G- 1(G)) = G,. 

for all x,y and n}) = 1. 

Without loss of generality we shall prove Theorems 2.1 and 2.2 in the case 
where both J and K fail to have a derivative at just one point, say at s1 and t1 

respective! y. For small positive r define the sets 

(3 .2) s ,l = [F-l(r ), F - l(sl - r)] u [F- l(sl + r ), F - l(J - r )]. 

s ,2 = [G- 1(r), G-~u~- r )] u [G- 1(t1 + r), G- 1(1 - r)], 

(3.3) Q rn = {ill: sup 1£,. - Fl < r/2, sup IG,. - Gl < r/2}. 

Let Sr = Sr1 X Sr2 be the product set in the plane and let x(O r,. ) denote the 
indicator function of Q rn · For m in 0 0 n Q r" the mean value theorem gives 

for all X in ~n l n s r l' In the above formula the function <I>,. is defined by <I>,. = 
F + ()(Fn - F), where () = ()(ill, x, n) is a number between 0 and I. Thus with 
probability I (using Assumption 2.3 (a)) 

(3.4) n~ (T,. - f.l) = I; ~= l A ;,. + I; f= o B;,. + I; I=a Brin + Bsn + C,. , 

where B0,. is defined in (2.4) and where 
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A1,. = n! ~ ~ J(F)K(G)d(H,.- H), 

A2,. = ~ ~ U,.(F)J'(F)K(G) dH, A3,. = ~ ~ V,(G)J(F)K'(G) dH, 

B1,. = n! ~ ~~,.c J,.(F,.)K,.(G,.) dH,, B2,. = -n! ~ ~~,.c J(F)K(G) dH,.., 

B73,. = x(O~,){n! ~ ~~ .. [J(F,.) - J(F)]K(G)dH,. - A2,.} , 

Br4n = x(07n)n! ~ ~~,.n src [J(F,.) - J(F)]K(G) dH", 

Br5n = x(Qrn) ~ ~~" nsr U,.(F)[J'(<I>n)- J'(F)]K(G) dHn, 

Br6n = x(Or,) ~ ~~,.nsr U,.(F)J'(F)K(G)d(H,. - H) , 

Br7n = -x(Qr,.) \ S~,,c u sr" Un(F)J'(F)K(G) dH, 

Ban= n! S ~~" J(F)[K(Gn) - K(G)]dH" - A3,., 

C,. = n! ~ \~,. [J(Fn)- J(F)][K(Gn)- K(G)] dH" . 

Let us note that 

which is symmetric to Ban· For this reason Ban will not be treated in the sequel. 
We now proceed to prove the asymptotic normality of the A-terms. Let us 

start with the very useful remark that if a and b satisfy (2.2), then for i = 1 
and 2 we can find numbers pi, q; > 1 satisfying p; -l + q; - I = 1 and 

(3.5) (a+~+ of2)pl < 1 ' 

As to the first pair of inequalities, we have a + t + of2 + b = 1 - of2 and con­
sequently a + t + of2 < 1 - of2 (the numbers a and b are strictly positive). 
Now choosep1 =(a+ t + 3of4)-1 and letq1 = (1- p1- 1)-1 • Then (a+ t+of2)p~< 1 
and bq1 = (! - a - o)/(! - a - 3of4) < 1. The second pair of inequalities can 
be obtained in the same way . 

The rv A1n can be written in the form 

(3 .6) 

where Ali,. = J(F(X;))K(G( Y;)) - f.1- are independent and identically distributed 
(i.i.d.) with mean zero. Under Assumption 2.1 application of (1.5) with p =Po 
and q = q0 shows that the rv Alin has a finite absolute moment of order 2 + o0 

for some o0 > 0. The same conclusion holds under Assumption 2.2 for H in ,)Yt"'ca 
as may be seen by applying (1.6). Moreover this moment will be uniformly 
bounded above for H within d'C"(fft"'ca )· 

Because 

where 

(3 .7) </>x .(x) = 0 if x < X; 
' 

and </>x .(x) = 1 if x ~ X ; , 
t 

we have 

(3.8) 
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where the A2; " = ~ ~ (rpx; - F)J'(F)K(G) dH are i. i.d. with mean zero. Under 
Assumptions 2. 1 or 2.2 we have 

IAzinl ;£ D 2 r!- oi4(F(X;)) ~ ~ r•+!+ui4(F)rb(G) dH. 

For some o, > 0 the random part of this upper bound possesses an absolute 
moment of order 2 + o, which is uniformly bounded above for H in ,/ZC. Under 
Assumption 2.1 the nonrandom integral is seen to be uniform! y bounded above 
for H in .-/2'' by application of(1.5) with p = p1 and q = q1 as in (3.5). Uniform 
boundedness of this integral for H in ,;;z;_.0 holds under Assumption 2.2, as may 
be shown by application of ( 1.6 ). 

Analogously we can write 

(3.9) A - - ! " " A 3n - n L..J i= l 3i n ' 

where A3; ,. = ~ S (¢v; - G)J(F)K'(G) dH are i.i.d. with mean zero. Again for 
o1 > 0 this rv has a finite absolute moment of order 2 + o, which is uniformly 
bounded for H in ,/2'(,':/.(~70 ) . This time use ( 1.5) with p = p2 and q = q2 as in 
(3.5) . 

Combining (3.6), (3.8) and (3.9) we get l: t= , A;n -"d N(O, a 2) as n--" oo. The 
variance a 2 is given by (see [I]) 

(3.10) a 2 = Var [J(F(X))K(G( Y)) + ~ ~ (¢ x - F)J'(F)K(G) dH 

+ ~ ~ (¢v - G)J(F)K'(G) dH] , 

with ¢defined in (3.7). 
Since we have shown that an absolute moment of order larger than 2 exists 

and is uniformly bounded on ,/z ( ,/c ~:o), and because the variance is uniformly 
bounded away from zero on ,/c .,(,/2 ~" ),the established convergence in distribu­
tion is uniform for H in ,;;,:-· '(,-/c~") by Esseen's theorem (see e.g. [3], Section 4) . 

4. Some lemmas. We start with a number of lemmas to be used in the proofs 
of both Theorem 2.1 and Theorem 2.2. 

LEMMA 4.1. For any ( ~ 0 the function r' is symmetric about !, decreasing on 
(0, !] and has the property that for each f3 in (0, 1) there exists a constant M = M~ 

such that r~ (ps) ;£ Mr' (s) for 0 < s ;£!and r' (l - {3(1 - s)) ;£ Mr' (s) for!< 

s < 1. 

PROOF. On (0, !] we have r' (ps) = (f3st ' (l - f3st ~ ;£ p-CrC(s). A similar 
argument applies to the interval(!, 1). D 

LEMMA 4. 2. For each (J) let <i> n = <i> nw and w n = w nw be functions on Ll,.l = Ll,. lw 

and Ll"2 = Ll ,.2w respectively (see (2 .6)), satisfying min (F, F,. ) ;£ <i>,. ;£ max (F, F,. ) 
and min (G, G,.) ;£ W,. ;£max (G, G,.) where defined. Then uniformly for n = 1, 
2, · · · and HE //Z:": 

(i) supa,.1 r ' (<!>,.)r-C(F) = OP(1) for each ( ~ 0; 
(ii) supa,. 2 r ''(W,.),- r, (G) = OP(1) for each r; ~ 0 ; 

(iii) sup1_""·""> jU,.(F)Ir~- '(F) = 0/1) for each r > 0. 
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PROOF. (i) From formula (3.1) and e.g. from [11], Lemma A.3 it follows 
that for each c > 0 there exists a constant (3 = (3, in (0, 1) such that 

(4.1) P(Qn) = P({(3F ~ Fn ~ 1- (3(1- F) on lln1}) >I- c, 

for all nand uniformly in all continuous F. Because of the definition of <D" we 
have (3F ~ <D n ~ 1 - (3( 1 - F) on lln1• By Lemma 4. 1 this implies that for some 
constant M ,, we have r'(<Dn) ~ M,,r' (F) for x in ll n1 on the set Qn. 

(ii) This is analogous to (i). 
(iii) This follows immediately from Lemma 2.2 of Pyke and Shorack [ IO]. D 
For each positive integer k we define a function lk on [0, I] by 

(4.2) /k(O) = 0, /k(s) = (i - 1 )/k for (i- I )jk < s ~ ijk, 

i=I, ... ,k, 

LEMMA 4.3. Ask, n ~ oo, sup,- oo ,oo) IUn(Ik(F)) - Un(F)[ ~P 0 uniformly in all 
continuous F. 

PROOF. Note thatsup_oo<x<oo IUn(/k(F))- Un(F) [ = SUPo:>s:;>I[Un(/k)- Un[, which 
is no longer dependent on F. The Un-processes converge weakly to a tied-down 
Wiener process U0 (see e.g. Billingsley [2]). In Pyke and Shorack [IO] these Un­

and U0-processes are replaced by On- and 0 0-processes defined on a single new 
probability space (0, ~W.-P) and having the same finite dimensional distributions 
as the original processes (see also Skorokhod [ 12]). These new processes satisfy 

sup [0,.- 0 0 [ ~a . s . 0 and hence also sup [On(Ik)- 0 0(lk) [->a.s. 0 uniformly in 
k, as n ~ oo. Now sup [On(Ik)- On[ ~sup [On- 00[ +sup [00 - 00(/k)[ + 
sup [ 00(/k) - 0,.(/k)[. For almost every w the function 00 is uniformly con­
tinuous on [0 , 1] so that sup [00 - 00(/k)[ ~a.s . 0 ask~ oo. This proves that 
sup [ 0,.(/k) - On [ ~u . s . 0 fork, n ~ oo. This last result implies the convergence 
in probability of the lemma. D 

Let ).i and A be the random indices 1 ~ !.i( w ), A( w) ~ n such that 

(4.3) X" = X,.,. and Y.< = Y,.,.. 

LEMMA 4.4. Asn~ oo, P({an ~ F(X") ~I- a,.} n {a,.~ G(Y") ~ 1- an})~1 

uniformly for H in ,yt:? provided only an= o(n-1). 

PROOF. The probability of the complementary event is bounded above by 
2an" + 2[1- (I- a,.)"]~ 0 as n~ oo, independently of H in //c. D 

We conclude this section with some lemmas needed for Theorem 2.2. 

LEMMA 4.5. As n ~ oo, P({ Y" = Y,.,.}) -> 0 uniformly for H in JCco · 

PROOF. P({ Y" = Y,.,.}) = P(U7=1 {(X;, Y;) =(X,.,., Yn,.)}) = n ~ ~ H"-1 dH. Note 
that for all x, y we have H(x, y) ~ F(x) and H(x, y) ~ G(y). Letting n0 = (n- 1 )/2 

and applying (1.6) we obtain 

n ~ ~ H"- 1(x, y) dH(x, y) ~ n ~ ~ F"o(x)G"o(y) dH(x, y) 

~ Cn[ ~U"or0/2 d/] 2 

= Cn[f(n0 - of2 + 1 )f( 1 - of2)jf(n0 - o + 2)J2 

~ Clnnoo-2 = O(n"-1) ~ 0 
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as n ~ oo, because 0 < o < i· Here C1 is a constant depending on Cando only; 
hence the convergence is uniform for H in ///'~ 8 • D 

LEMMA 4.6. Asn ~ oo , P({r ,. ;;;; G(Y.);;;; I- r ,.}) ~ I uniformlyforH in ,?'C'ca 

provided r n ;;;; an-o for some positive constant a. 

PROOF. This probability equals I- P({G(Y.) < r ,. }) - P({G(Y.) >I- r ,.}) 
for n larger than (2a)1 ' 8 • Because of the independence of the sample elements, 
application of ( 1.6) gives 

P({G(Y. ) < r,.}) = nP([ni ,:nF(Xi );;;; F(X,.)}] n {G(Y,.) < r,.}) 
= n ( = (u- Irr,.> p n-I(x) dH(x Y) 

J - co J - oo n 1P n 

;;;; Cn[~~ ["- lro/2 dl][~ 6n r o/2 dl] 

= C1 n[f(n- oj2)jr(n + I -.o)]n-"+"2' 2 

as n ~ oo , because -o/2 + o2j2 < 0 for 0 < o < i· Here C1 and C2 are constants 
depending on C, o and a only; hence the convergence is uniform for H in 

:;z'ca · D 

5. Proof of the theorems: Asymptotic negligibility of the remainder terms under 

Assumption 2. 3(a). Let us start with a further decomposition of C,., which can 
be seen to be the sum of 

Crln = x(D~,.)n~ ~~ a,. [J(F,.)- J(F)][K(G,.)- K(G)] dH,., 

Crzn = x(Dr,.)nt ~ ~ a,. n s,c [J(F,.)- J(F)]K(G,.) dH,. , 

c r3n = -x(Qrn)n ~ ~ L ,. rt src [J(F,. )- J(F)]K(G) dH,. , 

Cr4n = X(Q r,.) ~ ~ 8 ,. ,, sr U,.(F)J'(<D,.)[K(G,.) - K(G)] dH,.. 

From this we see that Br4,. and C73,. cancel out. The asymptotic negligibility 

of the other B- and C-terms will be given as corollaries to the lemmas of the 

previous section. 

CoROLLARY 5.1. As n ~ oo , B1,. ~P 0 uniformly for H in ,/c/·( ,?2~6 ). 

PROOF. The rv 8 1,. is bounded by .L: ~= I B1i n where 

B11 ,. = n~ IJ,.(l) l ~~ ! x,. ,. lx a ,.2 IK,.(G,. (y))l dH,.(x,y), 

B12,. = n~ IJ,.(1)K,.(1) 1 ~ ~ !rx ,. ,..v,.,. ll dH,.(x, y), 

8 13,. = n~ IK,. (1 )I ~~ a x{ v l ll ,.(F,.(x))l dH,.(x, y). 
n l n n 

Under the assumptions of Theorem 2.1 we have at once that the sum of these 
terms is of order O(n- Ha+b) = O(n-") ~ 0 as n ~ oo, uniformly for H in ,7?. 

Under the assumptions of Theorem 2.2 first consider B11 ,.. By Assumption 2.2, 

IK,.(G,.(y))l ;;;; Drb(G,.(y)). Application of Lemma 4.2 (ii) with W,. = G,. and r; = b 

gives the existence of a constant M such that D1,. = {rb(G,.) ;;;; Mrb(G) on ~ ,.2} has 

probability larger than 1 - c: uniformly for n = 1, 2, ... and all continuous H . 

Also 
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x(Oin)Bnn ;£ DMn-!IJn(l) lrb(G( Y.)), 

where J.i is defined by (4.3). Set ln = n-! IJn(l) l and note that by (1.2) and As­
sumption 2.2 we have ln ;£ D1 n- 8 for some constant D1 ~D. Let 0 2n = {Jn ;£ 
G( Y,) ;£ 1 - J n}· Then 

as n ~ oo. Applying Lemma 4.6 we see that P(n;=1 O;n) > 1 - 2$ for n large 
enough, uniformly for H in ,'/Z-"ca · A symmetric argument can be given for B13n. 

For the rv B12n use Lemma 4.5 to see that the set on which this rv may assume 
a nonzero value has probability converging to zero as n ~ oo, uniformly for H 

in ,?C'ca. D 

COROLLARY 5.2. As n ~ oo, B2n ~P 0 uniformly for H in d""C"(Yt"'ca)· 

PROOF. The rv B2n is bounded by .L:;=I B2;n where 

B21 n = D 2n-! ra(F(X,))rb(G( Y,)), 

B22 n = D 2n-!ra(F(X"))rb(G( Y")), 

with ).1 and}. defined by (4.3). 
Under the assumptions of Theorem 2.1 consider 0 1" ={an;£ F(X,) ;£ 1- an} n 

{an ;£ G( Y,) ;£ 1 - an}, with an = na+" - 1. Note that nan~ 0. Then 

X(Q )B < D2n- !a -a-b( 1 - a )-a-b 
l n 21n = n n 

= D2(nan)l-a-b(J - an)-a-b ~ 0 

as n ~ oo. Lemma 4.4 gives that P(01,) ~ 1 as n ~ oo, uniformly for H in //27• 

The same argument applies for the rv B22,.. 

Under the assumptions of Theorem 2.2 consider 

Qzn = {.Bn ;£ F(X, ) ;£ 1 - .Bn} n {J n ;£ G( YJ ;£ 1 - J n} , 

with .Bn = (n log n)- 1 and ln = n-" . Then by (2.3) 

x(Ozn)Bzln ;£ D2n- 1,Bn-aln-b(1 - .Bnta(l - rntb ~ 0 

as n ~ oo . By Lemmas 4.4 and 4.6 we see that P(02n) ~ 1 as n ~ oo, uniformly 
for H in ,~/~a· The rv B22,. can be treated in the same way. D 

COROLLARY 5.3. For fixed J, Br3n ~p 0 and crln ~p 0 as n ~ oo, uniformly for 
H in ,;:>z~·. 

PROOF. P(Q~n) ~ 0 uniformly for H in c-:>C' by the Glivenko-Cantelli theorem 
and because the distribution of sup IFn - Fl does not depend on H in c?Z'. D 

COROLLARY 5.4. For fixed r. Br5n ~p 0 and cr4n ~p 0 as n ~ oo, uniformly for 

H in ,')ff'. 

PROOF. According to Lemma 4.2 (iii) with r = !, for given$ > 0 there exists 
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a constant M such that n .. = {sup 1 U .. (F)I ;;;: M} has probability larger than 1 - c: 
for all n and H in :YC'. Also 

x(Dn)IBronl ;;;: M sup~n1nsn IJ'(<D .. ) - J'(F)I SUPsr21K(G)I . 

The function K(G) is bounded on Sr2 and the bound does not depend on H in 
,/C'. The function J' is uniformly continuous on [rf2, S1 - r/2] U [s1 + rf2, 
1 - r/2]. Since !<D .. - Fl ;;;: IF .. - Fl where <I>n is defined, the Glivenko-Cantelli 
theorem yields sup~" 1 nsn IJ'(<Dn) - J'(F)I---+P 0 uniformly for H in c?'C'. A similar 
argument may be used for cr<n• 0 

COROLLARY 5.5. For fixed r, Bran ---+p 0 as n----+ oo, uniformly for H in /)Z/ . 

PROOF. For arbitrary k we have (see (4.2)) 1Br6nl ;£ .l:I=1 BrBikn' where 

Br6Ikn = s s~ .. nsr IUn(F)J'(F)K(G) - U .. (lk(F))J'(fk'(F))K(Ik(G))I dHn' 

Br62kn = I ( s~ ns Un(lk(F))J'(lk(F))K(lk(G)) d(Hn - H)l ' l n r 

Br63kn = s s~n ns r IUn(F)J'(F)K(G) - Un(lk(F))J'(lk(F))K(lk(G))i dH. 

Let us first consider Br6Ikn and Br63 kn' which are both bounded by the supremum 
of the integrand over the set Sr. Let an arbitrary c: > 0 be given. Application 
of Lemma 4.3 gives the existence of constants r;kn -• 0 as k, n----+ oo, such that 
Qkn = {sup IUn(F)- Un(lk(F))i ;£ r;k,.} has probability larger than l - c: for all 
k, nand all H in 7C'. Note that on ([r, S1 - r] u [s1 + r, l - r]) x ([r, t1- r] u 
[t1 + r, l - r]) the function J'(s)K(t) is bounded, say by a constant Mr, and 
uniformly continuous. By Lemma 4.2 (iii) with r = !, there exists a constant 
M such that n .. = {sup IU,.(F)I ;;;: M} has probability larger than l - c. Let us 
finally write (kr = max8 r IJ'(F)K(G)- J'(lk(F))K(lk(G))i, which tends to zero as 
k----+ oo, uniformly for H in c?Z-"'. Hence for i = l, 3 

x(Dkn n Q")Br6ikn;:;:;; YJknMr + M(kr----+ 0 

ask, n----+ oo for fixed r. Because P(Qkn n Q") > 1 - 2c: uniformly for H in c?'c 
we may conclude that Br61 kn ---+P 0 and Br63 kn ---+P 0 uniformly for H in c?C', as 
k, n----+ oo. 

Let us next consider Br62 kn for a fixed value k. For each win 0,. the integrand 
in the expression for this rv is a simple step function assuming a value aiikn(w) 
on the rectangle 

Riikn = (F- 1((i- 1 )/k), F- 1(ifk)] X (G- 1((j- 1 )/k), G-1(j/k)] n Sr n ~ .. , 
for i = 1, · · ·, k and j = 1, · · ·, k. Because laiiknl ;£ M(Mr + (kr) on D,., we 
have 

x(D .. )Br62kn = I L: ~=1 L: ;=1 aijkn s s nwn d( Hn - H)l 

;£ 4k2M(Mr + (kr) sup IHn - HI---+P 0 

as n----+ oo, uniformly for H in ~·. Here Theorem 1-m of Kiefer [8] is used. 
The conclusion of the corollary follows by straightforward combination of these 
results. 0 
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CoROLLARY 5.6. As r l 0 and n ~co, Br7n ~p 0 and cr2n ~p 0, uniformly for 

H in 7c(d'C'co )· 

PROOF. Let e > 0 be given and let us first consider B r7n. By Lemma 4.2 (iii), 

taking r = oj4, there exists a constant M1 such that Q1" ={I U"(F)J ~ M1 rH 8 i 4(F)} 

has probability larger than 1 - c: for all n and H in ,?c. From Assumption 2.1 

(Assumption 2.2) it may be seen that 

(5 .1) 

Next consider Cr 2n. By Assumption 2.1 (Assumption 2.2) we have JK(Gn)J ~ 

Drb(Gn) on a,2 and application of Lemma 4.2 (ii) with W" = G" and r; = b gives 
the existence of a constant M 2 such that Q2" = {rb( Gn) ~ M 2 rb( G) on a"2} has 
probability larger than 1 - c: for all n and H in ,/c . . Take an arbitrary w in Q 

and let US first consider those values of X in ani for which the open random 

interval between the points F(x) and Fn(x) does not contain sl" Then by continuity 

of Jon the closed and differentiability on the open interval, the mean value 
theorem can be applied; it follows from Assumption 2.1 (Assumption 2.2) that 

For those values of X in a,! for which the open random interval between the 
points F(x) and F,(x) does contain sl' the mean value theorem can be applied 
stepwise, since J is continuous on the closed interval and differentiable on the 

two open intervals between F(x), Fn(x) and s1 • We thus get the estimate 

by Assumption 2.1 (Assumption 2.2). Where defined on ani' both <f>0• and <f> 1" , 

<1>2" lie between F and F,. By Lemma 4.2 (i), taking ( = a + 1, there exists a 

constant M3 such that Q3n = {maxi=O,l,2 ra+l(<f>;n) ~ M3 ra+I(F) where defined on 
anr} has probability larger than 1 - c: for all nand H in /¥-'. Combining these 
results we have 

(5.2) E(x(n;=r Q;n)JCr2nJ) ~ 2D2M 1 M 2 M 3 ~ ~sr c raH+" 14(F)rb(G) dH. 

From (5.1) and (5.2) it is clear that the corollary is proved if we show that 
the integral on the right in (5.1) converges to zero as r l 0 and n ~co, uniformly 
for H in 7c(,~co )· For this purpose we start with the integral 

(5.3) ~ ~ s c ra+Hof4(F)rb(G) dH, 
r 

and notethatS/ c (S~ 1 x (-co, co)) U ((-co, co) x S~2). Under Assumption 
2.1, by application of ( 1. 5) with p = p1 and q = q1 as in (3.5), we find that (5. 3) 
is bounded uniformly for H in J'c,· by 

(5.4) 

Since by (3.5) both exponents of the function rare smaller than 1, the dominated 



60

NONPARAMETRIC TESTS FOR INDEPENDENCE 1133 

convergence theorem implies convergence of (5.4) to zero as r l 0. Under As­
sumption 2.2 and for H in 7C"c , by an application of (1.6) we see that (5.3) is 
bounded uniformly for H in c5>C"c• by 

(5 .5) C[~ ( O , r lU(s 1 -r .s 1 + rl U( l-r , l l rl- iJ/ 4 df][~ r~-o/ 2 df] 

+ C[S ri-a/ 4 d/][S ,o,r)U(t1- r,t1+ rl U( I - r ,I l r!- ii/ 2 dl]' 

which by the dominated convergence theorem converges to zero as r l 0. Hence 
under the assumptions of Theorem 2.1 (Theorem 2.2) a value j' of r can be chosen 
such that (5.3) is smaller than s for all Hin 7C"(..-5>C"c• ) provided r;;;; f. For this 
j' there exists an index fl = fl ; such that P({.:ln ::::J S; }) > 1 - s uniformly for H 

in 7C", provided n ~ fl . It follows that under the assumptions of Theorem 2.1 
(Theorem 2.2) the integral on the right in (5.1) is smaller than s with probability 

larger than 1 - s uniformly for H in 7C"(7C"c•) for a'll r ;£ j' and all n ~ fl. 0 
In order to show how the results of these corollaries can be combined to 

complete the proof of Theorems 2.1 and 2.2, let an arbitrary s > 0 be given . 

First use Corollary 5. 6 to choose a fixed r and an index n1 to ensure P( {/ B,7n/, 
JC,2n/ ;£ s}) > 1- s foralln > n1• NextuseAssumption2.3(a)andCorollaries 
5.1-5.5 to choose for the above fixed r an index n2 = n2, > n1 such that P({ /BinJ , 
JBrin /, /Crkn / ;£ s fori= 0, 1, 2; j = 3, 5, 6; k = 1, 4}) > 1 - s for n > n2• This 
implies that the probability that the sum of all these second order terms does 

not exceed lOs is larger than 1 - 2s uniformly for H in c7C"(7C"c• ), as n > n2 • 

6. Replacing Assumption 2.3(a) by Assumption 2.3(b). We shall now suppose 
that Assumption 2.3 (b) holds. Again the theorems will be considered only in 
the case where J and K fail to have a derivative at one point, s1 and 11 respectively. 
The proof is based on an analogue of (3.4). We shall need both the empirical 
processes and the processes Un *(F)= n~(Fn * -F), Vn *(G)= n!(Gn * -G). Instead 

of the set O,n we shall use Oin = {w: sup JFn *- F/ < rf2, sup JGn * - GJ < r/2}. 
The role of .:ln will be taken over by its closure Lin = Lin1 X Lin2 = [ X1n, Xnn] X 

[ Y1n, Ynn ]. Because integration over Lin with respect to dHn is the same as in­
tegration over the entire plane, we now have the simpler decomposition 

(6 . 1) n!(Tn - p) = I; ~=l Ain + B'dn + I; ~= l Biin + B:n + Cn * , 

with probability 1. Here B'dn is defined in (2.5), the A-terms are as given in 
Section 3 and 

Bi~n = x(Oi;){n! S S [J(Fn *) - J(F)]K(G) dHn - A2n} , 

Bi2n = x(Oin)n! S ~ s,c [J(Fn *) - J(F)]K(G) dHn , 

Bi3n = x(Oin) ~ ~ s, Ua *(F)[J'(<I>n *) - J'(F)]K(G) dHn , 

B';4n = x(Oin) S ~ ~n n s, Un *(F)J'(F)K(G) d(Hn - H) , 

Bio'll = x(OinHS S;;n ns, u n *(F)J'(F)K(G) dH - A2n } ' 

B:n = n! ~ S J(F)[K(Gn *)- K(G)] dHn - A3n , 

Cn * = n! ~ S [J(Fn *)- J(F)][K(Gn *)- K(G)] dHn . 
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The function <I>,.* arises from application of the mean value theorem and lies 

strictly between F and F,. * where defined. The analogues of B1,. and B2• are 

missing in this decomposition; this essentially simplifies the proof of the theorems. 

However, if one tries to prove the validity of Assumption 2.3 (b) when Assump­

tion 2.3 (a) is given to hold, problems similar to those connected with B1,. and 

B2,. recur. 
Only the second order terms differ from those in (3.4). For their asymptotic 

negligibility we need the following modifications of Lemma 4.2. 

LEMMA 6.1. For each (J) let d>,. * = d>:'" and W" * = "W:"' be functions on Li,.1 = Li,.1"' 

and Li,.2 = Li,.2"' respectively, satisfying min (F, F,. *) ~ d>,. * ~ max (F, F,. *) and 

min (G, G,. *) ~ W,. * ~ max (G, G,. *)where defined. Then, uniformly for n = 1, 

2, .. ·and HE :YC': 

(i) sup;;;,.1 r'(~,. *)r' (F) = OP(1) for each ( ~ 0; 
(ii) sup;;;,2 r~(W,. * )r ~(G) = OP(1) for each r; ~ 0. 

PROOF. It suffices to prove (i). Let us first show that for each c > 0 there 

exists a f3 = {3, in (0, 1) such that P( {f3 F ~ F,. * ~ 1 - {3( 1 - F) on Li,.1}) > 1 - c, 

for all nand uniformly in all continuous F: By ( 4.1) and because~~ nj(n + 1) ~ 1, 

we only have to prove that P({nj(n + 1) ~ 1 - {3 [1 - F(X,.,.)]}) > 1 - c for f3 

small enough. Because the F(X;) are independent uniform (0, 1) rvs, this proba­

bility equals 1 - {1 - 1 /[ f3(n + 1 )]}" > 1 - c for all n and uniformly in all 

continuous F, provided f3 = {3, is chosen sufficiently small. The proof can be 

concluded in the same way as that of Lemma 4.2. 0 

LEMMA 6.2 . Uniformly in all continuous F we have: 

(i) sup;;;,1 I U,. *(F)- U,.(F)Irh'(F) ~P 0 as n ~ oo, for each p > 0; 

( ii) sup;;;,.1 \U,. * (F)Ir~-r(F) = 0 P( 1) uniformly for n = 1, 2, · · ·, for each r > 0. 

PROOF. (i) Note that I U,. *(F) - U,. (F) I r~- P(F) < n-~r~- P(F) and that for any 

fixed f3 E (0, 1) we have r~- P( f3/n) = r' - ~'(1 - f3 /n) = O(n!- P). Because the F(X;) 

are independent uniform rvs, given an arbitrary e: > 0 we can choose a f3 = {3 , 

in (0, 1) such that P({{3jn ~ F(X1,.) ~ F(X,.,.) ~ 1 - N n}) > 1 - e: for all nand 

uniformly for all continuous F. Part (i) follows from a combination of these 

results . (ii) follows from (i) and Lemma 4.2 (iii). 0 
The proof that the sum of the B*- and C*-terms converges in probability to 

zero can be given by a method quite similar to that of Section 5, by using Lemmas 

6.1, 6.2 instead of Lemma 4.2. 
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