Skip to main content

Nonreceptor Tyrosine Kinases and Their Roles in Cancer

  • Chapter
  • First Online:
Signaling Pathways in Cancer Pathogenesis and Therapy
  • 839 Accesses

Abstract

From studies on tumor development in animals to identification of the first oncogene, the Src family of nonreceptor tyrosine kinases has been a focus of intense biological and medical interest for over 100 years. Aberrant signaling through Src and its eight related kinases has been found to be a common event in a range of human cancers, and increasing attention is being paid to inhibition of these kinases for the targeted therapy of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allgayer H, Boyd DD, Heiss MM, Abdalla EK, Curley SA, Gallick GE (2002) Activation of Src kinase in primary colorectal carcinoma: an indicator of poor clinical prognosis. Cancer 94:344–351

    Article  CAS  Google Scholar 

  • Araujo J, Armstrong AJ, Braud EL, Posadas E, Lonberg M, Gallick GE Trudel GC, Paliwal P, Agrawal S, and Logothetis CJ (2009) Dasatinib and docetaxel combination treatment for patients with castration-resistance progressive prostate cancer: a phase I/II study (CA180086). J Clin Oncol 27(15S):249s [abstract 5061]

    Google Scholar 

  • Araujo JC, Mathew P, Armstrong AJ, Braud EL, Posadas E, Lonberg M, Gallick GE, Trudel GC, Paliwal P, Agrawal S, Logothetis SJ (2011) Dasatinib combined with docetaxel for castration-resistant prostate cancer: results from a phase 1/2 study. Cancer. (in press)

    Google Scholar 

  • Avizienyte E, Wyke AW, Jones RJ, McLean GW, Westhoff MA, Brunton VG, Frame MC (2002) Src-induced deregulation of E-cadherin in colon cancer cells requires integrin signalling. Nat Cell Biol 4:632–638

    PubMed  CAS  Google Scholar 

  • Basu J (2004) Protein palmitoylation and dynamic modulation of protein function. Current Science 87(2):212–217

    CAS  Google Scholar 

  • Bjorge JD, Pang A, Fujita DJ (2000) Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. J Biol Chem 275(52):41439–41446

    Article  PubMed  CAS  Google Scholar 

  • Bolen JB, Veillette A, Schwartz AM, DeSeau V, Rosen N (1987) Activation of pp 60c-src protein kinase activity in human colon carcinoma. Proc Natl Acad Sci U S A 84:2251–2255

    Article  PubMed  CAS  Google Scholar 

  • Boyce BF, Yoneda T, Lowe C, Soriano P, Mundy GR (1992) Requirement of pp 60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J Clin Invest 90:1622–1627

    Article  PubMed  CAS  Google Scholar 

  • Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  PubMed  CAS  Google Scholar 

  • Broome MA, Hunter T (1997) The PDGF receptor phosphorylates Tyr138 in the c-Src SH3 domain in vivo reducing peptide ligand binding. Oncogene 14:17–34

    Article  PubMed  CAS  Google Scholar 

  • Cartwright CA, Coad CA, Egbert BM (1994) Elevated c-Src tyrosine kinase activity in premalignant epithelia of ulcerative colitis. J Clin Invest 93:509–515

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Pengetnze Y, Taylor CC (2005) Src inhibition enhances paclitaxel cytotoxicity in ovarian cancer cells by caspase-9-independent activation of caspase-3. Mol Cancer Ther 4:217–224

    PubMed  CAS  Google Scholar 

  • Coluccia AM, Benati D, Dekhil H, DeFilippo A, Lan C, Gambacorti-Passerini C (2006) SKI-606 decreases growth and motility of colorectal cancer cells by preventing pp 60 (c-Src)-dependent tyrosine phosphorylation of beta-catenin and its nuclear signaling. Cancer Res 66:2279–2286

    Article  PubMed  CAS  Google Scholar 

  • Demory ML, Boerner JL, Davidson R, Faust W, Miyake T, Lee I, Hüttemann M, Douglas R, Haddad G, Parsons SJ (2009) Epidermal growth factor receptor translocation to the mitochondria: regulation and effect. J Biol Chem 284:36592–36604

    Article  PubMed  CAS  Google Scholar 

  • Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE (2004a) Inhibition of SRC tyrosine kinase impairs inherent and acquired gemcitabine resistance in human pancreatic adenocarcinoma cells. Clin Cancer Res 10:2307–2318

    Article  PubMed  CAS  Google Scholar 

  • Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE (2004b) siRNA directed against c-Src enhances pancreatic adenocarcinoma cell gemcitabine chemosensitivity. J Am Coll Surg 198:953–959

    Article  PubMed  Google Scholar 

  • Efstathiou E, Logothetis CJ (2010) A new therapy paradigm for prostate cancer founded on clinical observations. Clin Cancer Res 16:1100–1107

    Article  PubMed  CAS  Google Scholar 

  • Fizazi K (2007) The role of Src in prostate cancer. Ann Oncol 18:1765–1773

    Article  PubMed  CAS  Google Scholar 

  • Garcia R, Parikh NU, Saya H, Gallick GE (1991) Effect of herbimycin a on growth and pp 60c-src activity in human colon tumor cell lines. Oncogene 6:1983–1989

    PubMed  CAS  Google Scholar 

  • Goldenberg-Furmanov M, Stein I, Pikarsky E, Rubin H, Kasem S, Wygoda M, Weinstein I, Reuveni H, Ben-Sasson SA (2004) Lyn is a target gene for prostate cancer; sequence-based inhibition induces regression of human tumor xenografts. Cancer Res 64:1058–1066

    Article  PubMed  CAS  Google Scholar 

  • Griffiths GJ, Koh MY, Brunton VG, Cawthorne C, Reeves NA, Greaves M, Tilby MJ, Pearson DG, Ottley CJ, Workman P, Frame MC, Dive C (2004) Expression of kinase-defective mutants of c-Src in human metastatic colon cancer cells decreases Bcl-xl and increases oxaliplatin- and Fas-induced apoptosis. J Biol Chem 279:46113–46121

    Article  PubMed  CAS  Google Scholar 

  • Guarino M, Rubino B, Ballabio G (2007) The role of epithelial-mesenchymal transition in cancer pathology. Pathology 39:305–318

    Article  PubMed  CAS  Google Scholar 

  • Han NM, Curley SA, Gallick GE (1996) Differential activation of pp 60(c-src) and pp62 (c-yes) in human colorectal carcinoma liver metastases. Clin Cancer Res 8:1397–1404

    Google Scholar 

  • Hay ED (1995) An overview of epithelio-mesenchymal transformation. Acta Anat 154:8–20

    Article  PubMed  CAS  Google Scholar 

  • Hunter T, Sefton BM (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A 77:1311–1315

    Article  PubMed  CAS  Google Scholar 

  • Ignelzi MA Jr, Miller DR, Soriano P, Maness PF (1994) Impaired neurite outgrowth of Src-minus cerebellar neurons on the cell adhesion molecular L1. Neuron 12:873–884

    Article  PubMed  CAS  Google Scholar 

  • Irby RB, Mao W, Coppola D, Kang J, Loubeau JM, Trudeau W, Karl R, Fujita DJ, Jove R, Yeatman TJ (1999) Activating SRC mutation in a subset of advanced human colon cancers. Nat Genet 21:187–190

    Article  PubMed  CAS  Google Scholar 

  • Ishizawar R, Parsons SJ (2004) C-Src and cooperating partners in human cancer. Cancer Cell 6:209–214

    Article  PubMed  CAS  Google Scholar 

  • Johnson FM, Gallick GE (2007) Src family nonreceptor tyrosine kinases as molecular targets for cancer therapy. Anticancer Agents Med Chem 7:651–659

    Article  PubMed  CAS  Google Scholar 

  • Koegl M, Zlatkine P, Ley SC, Courtneidge SA, and Magee AI. (1994) Palmitoylation of multiple Src-family kinases at a homologous N-terminal motif. Biochem J. 303 (pt3): 749-53. [Mol Cell. 1999; 3(5):629–38]

    Google Scholar 

  • Kopetz S (2007) Targeting Src and epidermal growth factor receptor in colorectal cancer: rationale and progress into the clinic. Gastrointest Canc Res 1(4 Suppl 2):S37–S41

    Google Scholar 

  • Kopetz S, Shah AN, Gallick GE (2007) Src continues aging: current and future clinical directions. Clin Cancer Res 13(24):7232–7236

    Article  PubMed  CAS  Google Scholar 

  • Lee LF, Louie MC, Desai SJ, Yang J, Chen HW, Evans CP, Kung HJ (2004) Interleukin-8 confers androgen-independent growth and migration of LNCaP: differential effects of tyrosine kinases Src and FAK. Oncogene 23:2197–2205

    Article  PubMed  CAS  Google Scholar 

  • Loganzo F Jr, Dosik JS, Zhao Y, Vidal MJ, Nanus DM, Sudol M, Albino AP (1993) Elevated expression of protein tyrosine kinase c-Yes, but not c-Src, in human malignant melanoma. Oncogene 8:2367–2644

    Google Scholar 

  • Lowe C, Yoneda T, Boyce BF, Chen H, Mundy GR, Soriano P (1993) Osteopetrosis in Src-deficient mice is due to an autonomous defect of osteoclasts. Proc Natl Acad Sci U S A 90:4485–4489

    Article  PubMed  CAS  Google Scholar 

  • Lowell CA, Soriano P (1996) Knockouts of Src-family kinases: stiff bones, wimpy T cells, and bad memories. Genes Dev 10:1845–1857

    Article  PubMed  CAS  Google Scholar 

  • Lowell CA, Niwa M, Soriano P, Varmus HE (1996) Deficiency of the Hck and Src tyrosine kinases results in extreme levels of extramedullary hematopoiesis. Blood 87:1780–1792

    PubMed  CAS  Google Scholar 

  • Mao W, Irby R, Coppola D, Fu L, Wloch M, Turneer J, Yu H, Garcia R, Jove R, Yeatman TJ (1997) Activation of c-Src by receptor tyrosine kinases in human colon cancer cells with high metastatic potential. Oncogene 15:3083–3090

    Article  PubMed  CAS  Google Scholar 

  • Martin GS (1970) Rous sarcoma virus: a function required for the maintenance of the transformed state. Nature 227:1021–1023

    Article  PubMed  CAS  Google Scholar 

  • Masumoto N, Nakaon S, Fujishima H, Kohno K, Niho Y (1999) v-src induces cisplatin resistance by increasing the repair of cisplatin-DNA interstrand cross-links in human gallbladder adenocarcinoma cells. Int J Cancer 80:731–737

    Article  PubMed  CAS  Google Scholar 

  • Morgan L, Gee J, Pumford S, Farrow L, Finlay P, Robertson J, Ellis I, Kawakatsu H, Nicholson R, Hiscox S (2009) Elevated Src kinase activity attenuates tamoxifen response in vitro and is associated with a poor prognosis clinically. Cancer Biol Ther 8:1550–1558

    Article  PubMed  CAS  Google Scholar 

  • Park J, Cartwright CA (1995) Src activity increases and Yes activity decreases during mitosis of human colon carcinoma cells. Mol Cell Biol 15:2374–2382

    PubMed  CAS  Google Scholar 

  • Park SI, Zhang J, Phillips KA, Araujo JC, Najjar AM, Volgin AY, Gelovani JG, Kim SJ, Wang Z, Gallick GE (2008) Targeting SRC family kinases inhibits growth and lymph node metastases of prostate cancer in an orthotopic nude mouse model. Cancer Res 68:3323–3333

    Article  PubMed  CAS  Google Scholar 

  • Paronetto MP, Farini D, Sammarco I, Maturo G, vespasiani G, Geremia R, Rossi P, Sette C (2004) Expression of a truncated form of the c-Kit tyrosine kinase receptor and activation of Src kinase in human prostate cancer. Am J Pathol 164:1243–1251

    Article  PubMed  CAS  Google Scholar 

  • Qin B, Ariyama H, Baba E, Tanaka R, Kusaba H, Harada M, Nakano S (2006) Activated Src and Ras induced gefitinib resistance by activation of signaling pathways downstream of epidermal growth factor receptor in human gallbladder adenocarcinoma cells. Cancer Chemother Pharmacol 58:577–584

    Article  PubMed  CAS  Google Scholar 

  • Roskoski R Jr (2005) Src kinase regulation by phosphorylation and dephosphorylation. Biochem Biophys Res Commun 331:1–14

    Article  PubMed  CAS  Google Scholar 

  • Ross FP (2006) M-CSF, c-Fms, and signaling in osteoclasts and their precursors. Ann N Y Acad Sci 1068:110–116

    Article  PubMed  CAS  Google Scholar 

  • Rous P (1911) A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med 13:397–411

    Article  PubMed  CAS  Google Scholar 

  • Shah AN, Gallick GE (2007) Src, chemoresistance and epithelial to mesenchymal transition: are they related? Anticancer Drugs 18(4):371–375

    Article  PubMed  CAS  Google Scholar 

  • Shenoy S, Chackalaparampil I, Bagrodia S, Lin PH, Shalloway D (1992) Role of p34cdc2-mediated phosphorylations in two-step activation of pp 60c-src during mitosis. Proc Natl Acad Sci U S A 89:7237–7241

    Article  PubMed  CAS  Google Scholar 

  • Soriano P, Montgomery C, Geske R, Bradley A (1991) Targeted disruption of the c-Src proto-oncogene leads to osteopetrosis in mice. Cell 64(4):693–702

    Article  PubMed  CAS  Google Scholar 

  • Staley CA, Parikh NU, Gallick GE (1997) Decreased tumorigenicity of a human colon adenocarcinoma cell line by an antisense expression vector specific for c-Src. Cell Growth Differ 8:269–274

    PubMed  CAS  Google Scholar 

  • Stehelin D, Varmus HE, Bishop JM, Vogt PK (1976) DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260:170–173

    Article  PubMed  CAS  Google Scholar 

  • Stein PL, Vogel H, Soriano P (1994) Combined deficiencies of Src, Fyn, and Yes tyrosine kinases in mutant mice. Genes Dev 8:1999–2007

    Article  PubMed  CAS  Google Scholar 

  • Stover DR, Liebetanz J, Lydon NB (1994) Cdc2-mediated modulation of the pp 60c-src activity. J Biol Chem 269:26885–26889

    PubMed  CAS  Google Scholar 

  • Stover DR, Furet P, Lydon NB (1996) Modulation of the SH2 binding specificity and kinase activity of Src by tyrosine phosphorylation within its SH2 domain. J Biol Chem 271:12481–12487

    Article  PubMed  CAS  Google Scholar 

  • Summy JM, Gallick GE (2003) Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev 22:337–358

    Article  PubMed  CAS  Google Scholar 

  • Summy JM, Gallick GE (2006) Treatment for advanced tumors: Src reclaims center stage. Clin Cancer Res 12(5):1398–1401

    Article  PubMed  CAS  Google Scholar 

  • Thomas SM, Brugge JS (1997) Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13:513–609

    Article  PubMed  CAS  Google Scholar 

  • Trevino JG, Summy JM, Gallick GE (2006) Src inhibitors as potential therapeutic agents for human cancers. Mini Rev Med Chem 6:681–687

    Article  PubMed  CAS  Google Scholar 

  • Vadlamudi RK, Sahin AA, Adam L, Wang RA, Kumar R (2003) Heregulin and HER2 signaling selectively Activates c-Src phosphorylation at tyrosine 215. FEBS Lett 543:76–80

    Article  PubMed  CAS  Google Scholar 

  • Veillette A, Foss FM, Sausville EA, Bolen JB, Rosen N (1987) Expression of the lck tyrosine kinase gene in human colon carcinoma and other non-lymphoid human tumor cell lines. Oncogene Res 1:357–374

    PubMed  CAS  Google Scholar 

  • Wiener JR, Windham TC, Estrella VC, Parikh NU, Thall PF, Deavers MT, Bast RC, Mills GB, Gallick GE (2003) Activated SRC protein tyrosine kinase is overexpressed in late-stage human ovarian cancers. Gynecol Oncol 88:73–79

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Doshi A, Lei M, Eck MJ, Harrison SC (1999) Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol Cell 3(5):629–638

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Zhang Y, Rodriguez RM, Ries WL, Key LL Jr (1996) Functions of the M-CSF receptor on osteoclasts. Bone 18:355–360

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Bjorge JD, Fujita DJ (2007) PTP1B contributes to the oncogenic properties of colon cancer cells through Src activation. Cancer Res 67(21):10129–10137

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary E. Gallick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wiener, J.R., Gallick, G.E. (2012). Nonreceptor Tyrosine Kinases and Their Roles in Cancer. In: Frank, D. (eds) Signaling Pathways in Cancer Pathogenesis and Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1216-8_4

Download citation

Publish with us

Policies and ethics