Skip to main content

Advertisement

Log in

Activated Src and Ras induce gefitinib resistance by activation of signaling pathways downstream of epidermal growth factor receptor in human gallbladder adenocarcinoma cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose: Although gefitinib, a selective inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, has been demonstrated to exhibit its antitumor activity by the blockade of EGF receptor, the role of signaling pathways downstream of EGFR in gefitinib sensitivity remains unknown. In this study, we investigated the mechanistic role of Src and Ras, major oncogene products implicated in the pathogenesis of many human cancers in gefitinib sensitivity. Methods: Using parental and v-src- or c-H-ras-transfected HAG-1 human gallbladder adenocarcinoma cell lines, effects of gefitinib on cytotoxicity, cell cycle purtubation and apoptosis, and tyrosine phosphorylation of EGFR, Akt, and Erk were determined by WST-1 assay, flow cytometry, and Western blots, respectively. Results: Activated Ras and Src conferred a strong resistance to gefitinib by nearly 30-fold and 200-fold, respectively. Gefitinib induced accumulation of cells in the G0/G1 phase of the cell cycle at 24-h, with progressive expansion of apoptotic cell population in parental HAG-1 cells, but these effects were completely abolished in v-src- or c-H-ras-transfected cell line. Upon gefitinib treatment, EGFR activation and subsequent downstream activation through Erk and Akt were significantly inhibited in HAG-1 cells. By contrast, gefinitib failed to inhibit the activation of both Akt and Erk in v-src-transfected cells and Erk, but not Akt in c-H-ras-transfected cells, despite the blockade of EGFR activation in these respective cell lines. Treatment of v-src-transfected cells with herbimycin A, a Src tyrosine kinase inhibitor, partially reversed the gefitinib resistance, with concomitant inhibition of Akt and Erk. Conclusion: Our results suggest that activated Ras and Src could induce gefitinib resistance by activating either or both of Akt and Erk signaling pathways, thus providing a strategic rationale for assessment of these specific signaling molecules downstream of EGFR to customize treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

EGFR:

Epidermal growth factor receptor

EGF:

Epidermal growth factor

RTK:

Receptor tyrosine kinase

MAPK:

Mitogen activated protein kinase

Erk:

Extracellular signal-regulated kinase

PI-3K:

Phosphatidylinositol 3’-kinase

References

  1. Salomon DS, Brandt R, Ciardiello F, Normanno N (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 19:183–232

    Article  PubMed  CAS  Google Scholar 

  2. Brabender J, Danenberg KD, Metzger R, Schneider PM, Park J, Salonga D, Holscher AH, Danenberg PV (2001) Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer is correlated with survival. Clin Cancer Res 7:1850–1855

    PubMed  CAS  Google Scholar 

  3. Grandis JR, Melhem MF, Gooding WE, Day R, Holst VA, Wagener MM, Drenning SD, Tweardy DJ (1998) Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst 90:824–832

    Article  Google Scholar 

  4. Shirai H, Ueno E, Osaki M, Tatebe S, Ito H, Kaibara N (1995) Expression of growth factors and their receptors in human early colorectal carcinomas: immunohistochemical study. Anticancer Res 15:2889–2894

    PubMed  CAS  Google Scholar 

  5. Yukawa M, Fujimori T, Hirayama D, Idei Y, Ajiki T, Kawai K, Sugiura R, Maeda S, Nagasako K (1993) Expression of oncogene products and growth factors in early gallbladder cancer, advanced gallbladder cancer, and chronic cholecystitis. Hum Pathol 24:37–40

    Article  PubMed  CAS  Google Scholar 

  6. Lee CS, Pirdas A (1995) Epidermal growth factor receptor immunoreactivity in gallbladder and extrahepatic biliary tract tumours. Pathol Res Pract 191:1087–1091

    PubMed  CAS  Google Scholar 

  7. Valerdiz-Casasola S (1994) Expression of epidermal growth factor receptor in gallbladder cancer. Hum Pathol 25:964–965

    Article  PubMed  CAS  Google Scholar 

  8. Olayioye MA, Graus-Porta D, Beerli RR, Rohrer J, Gay B, Hynes NE (1998) ErbB-1 and ErbB-2 acquire distinct signaling properties dependent upon their dimerization partner. Mol Cell Biol 18:5042–5051

    PubMed  CAS  Google Scholar 

  9. Muthuswamy SK, Gilman M, Brugge JS (1999) Controlled dimerization of ErbB receptors provides evidence for differential signaling by homo- and heterodimers. Mol Cell Biol 19:6845–6857

    PubMed  CAS  Google Scholar 

  10. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225

    Article  PubMed  CAS  Google Scholar 

  11. Alroy I, Yarden Y (1997) The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combinatorial ligand-receptor interactions. FEBS Lett 410:83–86

    Article  PubMed  CAS  Google Scholar 

  12. Sirotnak FM (2003) Studies with ZD1839 in preclinical models. Semin Oncol 30(Suppl 1):12–20

    Article  PubMed  CAS  Google Scholar 

  13. Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard JY, Nishiwaki Y, Vansteenkiste J, Kudoh S, Rischin D, Eek R, Horai T, NodAktakata I, Smit E, Averbuch S, Macleod A, Feyereislova A, Dong RP, Baselga J (2003) Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol 21:2237–2246

    Article  PubMed  CAS  Google Scholar 

  14. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–2139

    Article  PubMed  CAS  Google Scholar 

  15. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676):1497–1500

    Article  PubMed  CAS  Google Scholar 

  16. Sordella R, Bell DW, Haber DA, Settleman J (2004) Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305(5687):1163–1167

    Article  PubMed  CAS  Google Scholar 

  17. Wakeling AE, Guy SP, Woodburn JR, Ashton SE, Curry BJ, Barker AJ, Gibson KH (2002) ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res 62:5749–5754

    PubMed  CAS  Google Scholar 

  18. Anderson NG, Ahmad T, Chan K, Dobson R, Bundred NJ (2001) ZD1839 (Iressa), a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, potently inhibits the growth of EGFR-positive cancer cell lines with or without erbB2 overexpression. Int J Cancer 94:774–782

    Article  PubMed  CAS  Google Scholar 

  19. Moulder SL, Yakes FM, Muthuswamy SK, Bianco R, Simpson JF, Arteaga CL (2001) Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Res 61:8887–8895

    PubMed  CAS  Google Scholar 

  20. Moasser MM, Basso A, Averbuch SD, Rosen N (2001) The tyrosine kinase inhibitor ZD1839 (“Iressa”) inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells. Cancer Res 61:7184–7188

    PubMed  CAS  Google Scholar 

  21. Janmaat ML, Kruyt FA, Rodriguez JA, Giaccone G (2003) Response to epidermal growth factor receptor inhibitors in non-small cell lung cancer cells: limited antiproliferative effects and absence of apoptosis associated with persistent activity of extracellular signal-regulated kinase or Akt kinase pathways. Clin Cancer Res 9:2316–2326

    PubMed  CAS  Google Scholar 

  22. She QB, Solit D, Basso A, Moasser MM (2003) Resistance to gefitinib in PTEN-null HER-overexpressing tumor cells can be overcome through restoration of PTEN function or pharmacologic modulation of constitutive phosphatidylinositol 3′-kinase/Akt pathway signaling. Clin Cancer Res 9:4340–4346

    PubMed  CAS  Google Scholar 

  23. Magne N, Fischel JL, Dubreuil A, Formento P, Poupon MF, Laurent-Puig P, Milano G (2002) Influence of epidermal growth factor receptor (EGFR), p53 and intrinsic MAP kinase pathway status of tumour cells on the antiproliferative effect of ZD1839 (“Iressa”). Br J Cancer 86:1518–1523

    Article  PubMed  CAS  Google Scholar 

  24. Bos JL (1989) Ras oncogenes in human cancer: a review. Cancer Res 49(17):4682–4689

    PubMed  CAS  Google Scholar 

  25. Treisman R (1996) Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol 8(2):205–215

    Article  PubMed  CAS  Google Scholar 

  26. Irby RB, Yeatman TJ (2000) Role of Src expression and activation in human cancer. Oncogene 19:5636–5642

    Article  PubMed  CAS  Google Scholar 

  27. Mao W, Irby R, Coppola D, Fu L, Wloch M, Turner J, Yu H, Garcia R, Jove R, Yeatman TJ (1997) Activation of c-Src by receptor tyrosine kinases in human colon cancer cells with high metastatic potential. Oncogene 15(25):3083–3090

    Article  PubMed  CAS  Google Scholar 

  28. Jove R, Hanafusa H (1987) Cell transformation by the viral src oncogene. Annu Rev Cell Biol 3:31–56

    Article  PubMed  CAS  Google Scholar 

  29. Nakano S, Tatsumoto T, Esaki T, Nakamura M, Baba E, Kimura A, Ohshima K, Niho Y (1994) Characterization of a newly established human gallbladder carcinoma cell line. In Vitro Cell Dev Biol Anim 30A:729–732

    Article  PubMed  CAS  Google Scholar 

  30. Tatsumoto T, Nakano S, Shimizu K, Ono M, Esaki T, Ohshima K, Niho Y (1995) Direct tumorigenic conversion of human gallbladder carcinoma cells by v-src but not by activated c-H-ras oncogene. Int J Cancer 61(2):206–213

    Article  PubMed  CAS  Google Scholar 

  31. Janmaat ML, Rodriguez JA, Gallegos-Ruiz M, Kruyt FA, Giaccone G (2006) Enhanced cytotoxicity induced by gefitinib and specific inhibitors of the Ras or phosphatidyl inositol-3 kinase pathways in non-small cell lung cancer cells. Int J Cancer 118:209–214

    Article  PubMed  CAS  Google Scholar 

  32. Li B, Chang CM, Yuan M, McKenna WG, Shu HK (2003) Resistance to small molecule inhibitors of epidermal growth factor receptor in malignant gliomas. Cancer Res 63:7443–7450

    PubMed  CAS  Google Scholar 

  33. Biscardi JS, Belsches AP, Parsons SJ (1998) Characterization of human epidermal growth factor receptor and c-Src interactions in human breast tumor cells. Mol Carcinog 21:261–272

    Article  PubMed  CAS  Google Scholar 

  34. Sato K, Sato A, Aoto M, Fukami Y (1995) c-Src phosphorylates epidermal growth factor receptor on tyrosine 845. Biochem Biophys Res Commun 215:1078–1087

    Article  PubMed  CAS  Google Scholar 

  35. Han SW, Hwang PG, Chung DH, Kim DW, Im SA, Kim YT, Kim TY, Heo DS, Bang YJ, Kim NK (2005) Epidermal growth factor receptor (EGFR) downstream molecules as response predictive markers for gefitinib (Iressa, ZD1839) in chemotherapy-resistant non-small cell lung cancer. Int J Cancer 113(1):109–115

    Article  PubMed  CAS  Google Scholar 

  36. Yan J, Roy S, Apolloni A, Lane A, Hancock JF (1998) RAS isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. J Biol Chem 273:24052–24056

    Article  PubMed  CAS  Google Scholar 

  37. Liebmann C (2001) Regulation of MAP kinase activity by peptide receptor signalling pathway: paradigms of multiplicity. Cell Signal 13:777–785

    Article  PubMed  CAS  Google Scholar 

  38. Ross PJ, George M, Cunningham D, DiStefano F, Andreyev HJ, Workman P, Clarke PA (2001) Inhibition of Kirsten-ras expression in human colorectal cancer using rationally selected Kirsten-ras antisense oligonucleotides. Mol Cancer Ther 1(1):29–41

    PubMed  CAS  Google Scholar 

  39. Murakami Y, Nakano S, Niho Y, Hamasaki N, Izuhara K (1998) Constitutive activation of Jak-2 and Tyk-2 in a v-Src-transformed human gallbladder adenocarcinoma cell line. J Cell Physiol 175(2):220–228

    Article  PubMed  CAS  Google Scholar 

  40. Taron M, Ichinose Y, Rosell R, Mok T, Massuti B, Zamora L, Mate JL, Manegold C, Ono M, Queralt C, Jahan T, Sanchez JJ, Sanchez-Ronco M, Hsue V, Jablons D, Sanchez JM, Moran T (2005) Acivating mutations in the tyrosine kinase domain of the epidermal growth factor receptor are associated with improved survival in gefitinib-treated chemorefractory lung adenocarcinomas. Clin Cancer Res 11(16):5878–5885

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Science, Sports, and Culture of Japan

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuji Nakano.

Additional information

Baoli Qin and Hiroshi Ariyama contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, B., Ariyama, H., Baba, E. et al. Activated Src and Ras induce gefitinib resistance by activation of signaling pathways downstream of epidermal growth factor receptor in human gallbladder adenocarcinoma cells. Cancer Chemother Pharmacol 58, 577–584 (2006). https://doi.org/10.1007/s00280-006-0219-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-006-0219-4

Keywords

Navigation