Net-by-Net Wire Optimization

  • Konstantin Moiseev
  • Avinoam Kolodny
  • Shmuel Wimer


The basic ideas for the optimization of a signal net are briefly reviewed in this chapter. To begin with, there is the delay optimization of a simple point-to-point wire driven by a single logic stage, considering the effects of wire capacitance and wire resistance (Fig. 5.1a). Next, the extended problem of optimizing a multistage logic path (which includes several point-to-point wires) is examined (Fig. 5.1b). Finally, the more general problem where the point-to-point wire segments are replaced by multisink interconnect trees is presented (Fig. 5.1c).


  1. [Adler 98]
    Adler, Victor, and Eby G. Friedman. “Repeater design to reduce delay and power in resistive interconnect.” Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on 45.5 (1998): 607–616.CrossRefGoogle Scholar
  2. [Aizik 11]
    Yoni Aizik, Avinoam Kolodny: Finding the Energy Efficient Curve: Gate Sizing for Minimum Power under Delay Constraints. VLSI Design (2011).Google Scholar
  3. [Amrutur 01]
    Amrutur, Bharadwaj S., and Mark A. Horowitz. "Fast low-power decoders for RAMs." Solid-State Circuits, IEEE Journal of 36.10 (2001): 1506–1515.CrossRefGoogle Scholar
  4. [Bakoglu 90]
    H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI. Reading, MA: Addison-Wesley, 1990.Google Scholar
  5. [Banerjee 02]
    K. Banerjee and A. Mehrotra, “A power-optimal repeater insertion methodology for global interconnects in nanometer designs,” IEEE Trans. Electron Devices, vol. 49, pp. 2001–2007, Nov. 2002.Google Scholar
  6. [Chen 05]
    R. Chen and H. Zhou, “An Efficient Data Structure for Maxplus Merge in Dynamic Porgramming”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2005, pp. 3004–3009.Google Scholar
  7. [Chen 96a]
    Chen, C. P., Chen, Y. P., & Wong, D. F. (1996, June). Optimal wire-sizing formula under the Elmore delay model. In Proceedings of the 33rd annual Design Automation Conference (pp. 487–490). ACM.Google Scholar
  8. [Chen 96b]
    Chen, Chung-Ping, and D. F. Wang. “A fast algorithm for optimal wire-sizing under Elmore delay model.” Circuits and Systems, 1996. ISCAS'96., Connecting the World., 1996 I.E. International Symposium on. Vol. 4. IEEE, 1996.Google Scholar
  9. [Cheng 00]
    C.-K. Cheng, J. Lillis, S. Lin and N.H. Chang, Interconnect Analysis and Synthesis, John Wiley Press, 2000Google Scholar
  10. [Cong 93]
    Cong, J., & Leung, K. S. (1993, November). Optimal wiresizing under the distributed Elmore delay model. In Proceedings of the 1993 IEEE/ACM international conference on Computer-aided design (pp. 634–639). IEEE Computer Society Press.Google Scholar
  11. [Cormen 05]
    T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to Algorithms, The MIT Press, 2005.Google Scholar
  12. [El-Moursy 04]
    El-Moursy, M. A., & Friedman, E. G. (2004). "Optimum wire sizing of RLC interconnect with repeaters", INTEGRATION, the VLSI journal, 38(2), 205–225.CrossRefGoogle Scholar
  13. [Fishburn 95]
    Fishburn, J.P.; Schevon, C.A., "Shaping a distributed-RC line to minimize Elmore delay," Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on , vol. 42, no. 12, pp. 1020–1022, Dec 1995. doi: 10.1109/81.481198.Google Scholar
  14. [Gao 99]
    Gao, Y., & Wong, D. F. (1999). Wire-sizing optimization with inductance consideration using transmission-line model. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 18(12), 1759–1767.CrossRefGoogle Scholar
  15. [Kapur 02]
    Kapur, Pawan, Gaurav Chandra, and Krishna C. Saraswat. "Power estimation in global interconnects and its reduction using a novel repeater optimization methodology." Proceedings of the 39th annual Design Automation Conference. ACM, 2002.Google Scholar
  16. [Karami 06]
    Karami, M. A., & Afzali-Kusha, A. (2006, December). Exponentially tapering ground wires for Elmore delay reduction in on chip interconnects. In Microelectronics, 2006. ICM'06. International Conference on (pp. 99–102). IEEE.Google Scholar
  17. [Li 06a]
    Li, Zhuo, and Weiping Shi. “An O (bn< sup> 2</sup>) time algorithm for optimal buffer insertion with b buffer types.” Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 25.3 (2006): 484–489.CrossRefGoogle Scholar
  18. [Li 06b]
    Li, Zhuo, and Weiping Shi. “An O (mn) time algorithm for optimal buffer insertion of nets with m sinks.” Design Automation, 2006. Asia and South Pacific Conference on. IEEE, 2006.Google Scholar
  19. [Lillis 95]
    Lillis, J., Cheng, C. K., & Lin, T. T. Y. (1995, May). Optimal and efficient buffer insertion and wire sizing. In Custom Integrated Circuits Conference, 1995., Proceedings of the IEEE 1995 (pp. 259–262). IEEE.Google Scholar
  20. [Lillis 96]
    Lillis, J., Cheng, C. K., & Lin, T. T. (1996). Optimal wire sizing and buffer insertion for low power and a generalized delay model. Solid-State Circuits, IEEE Journal of, 31(3), 437–447.CrossRefGoogle Scholar
  21. [Morgenshtein 10]
    Morgenshtein, A., Friedman, E. G., Ginosar, R., & Kolodny, A. (2010). Unified Logical Effort—A Method for Delay Evaluation and Minimization in Logic Paths With. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 18(5), 689–696.CrossRefGoogle Scholar
  22. [Roy 10]
    Roy, R.; Olver, F. W. J. (2010), "Lambert W function", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F. et al., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978–0521192255, MR2723248.Google Scholar
  23. [Sakurai 83]
    Sakurai, T.; and Tamaru, K.: Simple formulas for two- and three-dimensional capacities. IEEE Transactions on Electron Devices ED-30(2), (1983).Google Scholar
  24. [Sapatnekar 04]
    Sapatnekar, Sachin. Timing. Springer, 2004.Google Scholar
  25. [Sedra 87]
    Sedra, Adel S., and Kenneth Carless Smith. Microelectronic circuits. Vol. 4. Oxford University Press, 1987.Google Scholar
  26. [Shi 05]
    Shi, Weiping, and Zhuo Li. "A fast algorithm for optimal buffer insertion." Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 24.6 (2005): 879–891.CrossRefGoogle Scholar
  27. [Sutherland 99]
    Sutherland, I. E., Sproull, R. F., & Harris, D. F. (1999). Logical effort: designing fast CMOS circuits. Morgan Kaufmann.Google Scholar
  28. [Sylvester 98]
    D. Sylvester and K. Keutzer, “Getting to the bottom of deep submicron”, Proc. ICCAD, pp. 203–211, 1998.Google Scholar
  29. [van Ginnekken 90]
    L.P.P.P van Ginneken, “Buffer Placement in Distributed RC-Tree Networks for Minimal Elmore Delay,” Proc. International Symposium on Circuits and Systems, pp. 865–868, 1990.Google Scholar
  30. [Venkat 93]
    Venkat, Kumar. “Generalized delay optimization of resistive interconnections through an extension of logical effort.” Circuits and Systems, 1993., ISCAS'93, 1993 I.E. International Symposium on. IEEE, 1993.Google Scholar
  31. [Weste 04]
    N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective (3rd Edition), Addison Wesley, 2004.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Konstantin Moiseev
    • 1
  • Avinoam Kolodny
    • 2
  • Shmuel Wimer
    • 3
  1. 1.IntelHaifaIsrael
  2. 2.TechnionHaifaIsrael
  3. 3.Bar-Ilan UniversityRamat-GanIsrael

Personalised recommendations