Skip to main content

Performance Bound Analysis of Variational Linearized Analog Circuits

  • Chapter
  • First Online:
Statistical Performance Analysis and Modeling Techniques for Nanometer VLSI Designs

Abstract

Analog and mixed-signal circuits are very sensitive to the process variations as many matchings are required. This situation becomes worse as technology continues to scale to 90nm and below owing to the increasing process-induced variability[122, 148]. Transistor-level mismatch is the primary obstacle to reach a high yield rate for analog designs in sub-90nm technologies. For example, due to an inverse-square-root-law dependence with the transistor area, the mismatch of CMOS devices nearly doubles for each process generation less than 90nm [80, 104]. Since the traditional worst-case- or corner-case-based analysis is too pessimistic to sacrifice the speed, power, and area, the statistical approach [133] thereby becomes a trend to estimate the analog mismatch and performance variations. The variations in the analog components can come from systematic (or global spatial variation) ones and stochastic (or local random variation) ones. In this chapter, we model both variations as the parameter intervals on the components of analog circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Abu-Dayya and N. Beaulieu, “Comparison of methods of computing correlated lognormal sum distributions and outages for digital wireless applications,” in Proc. IEEE Vehicular Technology Conference, vol. 1, June 1994, pp. 175–179.

    Google Scholar 

  2. S. Dasgupta, “Kharitonov’s theorem revisited,” Systems & Control Letters, vol. 11, no. 5, pp. 381–384, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. H. de Figueiredo and J. Stolfi, “Self-validated numerical methods and applications,” in Brazilian Mathematics Colloquium monographs, IMPA/CNPq, Rio de Janeiro, Brazil, 1997.

    Google Scholar 

  4. O. Gay, D. Coeurjolly, and N. Hurst, “Libaffa: C +  + affine arithmetic library for gnu/linux,” May 2005, http://savannah.nongnu.org/projects/libaa/.

  5. Z. Hao, R. Shen, S. X.-D. Tan, and G. Shi, “Performance bound analysis of analog circuits considering process variations,” in Proc. Design Automation Conf. (DAC), July 2011, pp. 310–315.

    Google Scholar 

  6. V. L. Kharitonov, “Asymptotic stability of an equilibrium position of a family of systems of linear differential equations,” Differential. Uravnen., vol. 14, pp. 2086–2088, 1978.

    MathSciNet  MATH  Google Scholar 

  7. J. Kim, K. Jones, and M. Horowitz, “Fast, non-Monte-Carlo estimation of transient performance variation due to device mismatch,” in Proc. IEEE/ACM Design Automation Conference (DAC), 2007.

    Google Scholar 

  8. L. Kolev, V. Mladenov, and S. Vladov, “Interval mathematics algorithms for tolerance analysis,” IEEE Trans. on Circuits and Systems, vol. 35, no. 8, pp. 967–975, Aug 1988.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Levkovich, E. Zeheb, and N. Cohen, “Frequency response envelopes of a family of uncertain continuous-time systems,” IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications, vol. 42, no. 3, pp. 156–165, Mar 1995.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Masuda, S. Ohkawa, A. Kurokawa, and M. Aoki, “Challenge: Variability characterization and modeling for 65- to 90-nm processes,” in Proc. IEEE Custom Integrated Circuits Conf., 2005.

    Google Scholar 

  11. R. E. Moore, Interval Analysis. Prentice-Hall, 1966.

    Google Scholar 

  12. S. R. Nassif, “Model to hardware correlation for nm-scale technologies,” in Proc. IEEE International Workshop on Behavioral Modeling and Simulation (BMAS), Sept 2007, keynote speech.

    Google Scholar 

  13. M. Pelgrom, A. Duinmaijer, and A. Welbers, “Matching properties of mos transistors,” IEEE J. of Solid State Circuits, pp. 1433–1439, 1989.

    Google Scholar 

  14. L. Qian, D. Zhou, S. Wang, and X. Zeng, “Worst case analysis of linear analog circuit performance based on kharitonov’s rectangle,” in Proc. IEEE Int. Conf. on Solid-State and Integrated Circuit Technology (ICSICT), Nov 2010.

    Google Scholar 

  15. R. Rutenbar, “Next-generation design and EDA challenges,” in Proc. Asia South Pacific Design Automation Conf. (ASPDAC), January 2007, keynote speech.

    Google Scholar 

  16. A. S. Sedra and K. C. Smith, Microelectronic Circuits. Oxford University Press, USA, 2009.

    Google Scholar 

  17. C.-J. Shi and X.-D. Tan, “Canonical symbolic analysis of large analog circuits with determinant decision diagrams,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 19, no. 1, pp. 1–18, Jan 2000.

    Article  Google Scholar 

  18. C.-J. Shi and X.-D. Tan, “Compact representation and efficient generation of s-expanded symbolic network functions for computer-aided analog circuit design,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 20, no. 7, pp. 813–827, April 2001.

    Article  Google Scholar 

  19. C.-J. R. Shi and M. W. Tian, “Simulation and sensitivity of linear analog circuits under parameter variations by robust interval analysis,” ACM Trans. Des. Autom. Electron. Syst., vol. 4, pp. 280–312, July 1999.

    Article  Google Scholar 

  20. R. Spence and R. Soin, Tolerance Design of Electronic Circuits. Addison-Wesley, Reading, MA., 1988.

    Google Scholar 

  21. S. X.-D. Tan, W. Guo, and Z. Qi, “Hierarchical approach to exact symbolic analysis of large analog circuits,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 8, pp. 1241–1250, August 2005.

    Article  Google Scholar 

  22. S. X.-D. Tan and C.-J. Shi, “Efficient DDD-based interpretable symbolic characterization of large analog circuits,” IEICE Trans. on Fundamentals of Electronics, Communications and Computer Science(IEICE), vol. E86-A, no. 12, pp. 3112–3118, Dec 2003.

    Google Scholar 

  23. S. X.-D. Tan and C.-J. Shi, “Efficient approximation of symbolic expressions for analog behavioral modeling and analysis,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 6, pp. 907–918, June 2004.

    Article  Google Scholar 

  24. W. Tian, X.-T. Ling, and R.-W. Liu, “Novel methods for circuit worst-case tolerance analysis,” IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications, vol. 43, no. 4, pp. 272–278, Apr 1996.

    Article  Google Scholar 

  25. J. Vlach and K. Singhal, Computer Methods for Circuit Analysis and Design. New York, NY: Van Nostrand Reinhold, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shen, R., Tan, S.XD., Yu, H. (2012). Performance Bound Analysis of Variational Linearized Analog Circuits. In: Statistical Performance Analysis and Modeling Techniques for Nanometer VLSI Designs. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0788-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0788-1_14

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0787-4

  • Online ISBN: 978-1-4614-0788-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics