Skip to main content

The Role of Temperature in Electronic Design

  • Chapter
  • First Online:
Managing Temperature Effects in Nanoscale Adaptive Systems

Abstract

Four hundred years ago (c. 1600 CE), a bearded old man added a new contraption to his workshop—a hollow glass bulb attached to a long, hollow glass tube. He warmed the bulb in his hands and lowered the open end of the tube into a cool liquid. As the air inside the bulb cooled, some liquid was drawn upward into the instrument. The warmer the man could make the bulb before placing the tube in the liquid, the further up the tube the liquid would climb. The man’s name was Galileo Galilei, and he was experimenting with a new invention: the thermoscope [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Middleton WEK (1966) The history of the thermometer and its use in meteorology. Johns Hopkins University Press, Baltimore

    Google Scholar 

  2. Behar MF (1932) Temperature and humidity measurement and control. Instruments Publishing Company, 113–122

    Google Scholar 

  3. Fludd R (1638) Philosophia Moysaica Goudae, 2

    Google Scholar 

  4. Tuoriniemi JT, Knuuttila TA (2000) Nuclear cooling and spin properties of Rhodium down to picoKelvin temperatures. Physica B Condensed Matter 280:474–478

    Article  Google Scholar 

  5. Goren-Inbar N (2008) Fire out of Africa: a key to the migration of prehistoric man, says Hebrew University archaeological researcher. Hebrew University of Jerusalem, press release.

    Google Scholar 

  6. Thomas I (1941) Greek mathematical works, vol. II. Cambridge

    Google Scholar 

  7. Parigi G (1599) Archimedes’ burning glass warfare. Painting

    Google Scholar 

  8. Gilbert W (1600) De magnete. Peter Short, London

    Google Scholar 

  9. Davy H, Davy J (1840) The collected works of Sir Humphry Davy. Smith Elder and Co, London

    Google Scholar 

  10. Seebeck TJ (1822) Magnetische polarization der metalle und erze durch temperature-differenzen. Akad Berlin Abh 265–374

    Google Scholar 

  11. Peltier JCA (1834) Investigation of the heat developed by electric currents in homogeneous materials and at the junction of two different conductors. Ann Chim Phys 56:371

    Google Scholar 

  12. Gould CA, Shammas NYA, Grainger S, Taylor I (2008) A comprehensive reviewer of thermoelectric technology, micro-electrical and power generation properties. 26th Int Conf in Microelectronics, 329–332

    Google Scholar 

  13. Faraday M (1839) Experimental researches in electricity, 1st ed. Bernard Quaritch, London

    Google Scholar 

  14. Bernstein K et al (2006) High-performance CMOS variability in the 65-nm regime and beyond. IBM J Res And Dev 50:433–449

    Article  Google Scholar 

  15. Frank DJ et al (2001) Device scaling limits of Si MOSFETs and their application dependencies. Proc IEEE 89:259–288

    Article  Google Scholar 

  16. Frank DJ (2002) Power-constrained CMOS scaling limits. IBM J Res and Dev 46:235–244

    Article  Google Scholar 

  17. Semiconductor Industry Association (2007) International technology roadmap for semiconductors, executive summary. [Online] http://www.itrs.net

  18. Rabaey J, Chandrakasan A, Nikolic B (2003) Digital integrated circuits: a design perspective, 2nd ed. Prentice Hall, New Jersey

    Google Scholar 

  19. Rusu S, Sachdev M, Svensson C, Nauta B (2002) Trends and challenges in VLSI technology scaling towards 100 nm. 7th Asia and South Pacific Design Automation Conf 16–17

    Google Scholar 

  20. Goodson KE, Flik MI, Su LT, Antoniadis DA (1995) Prediction and measurement of temperature fields in silicon-on-insulator electronic circuits. J Heat Transfer 117:574–581

    Article  Google Scholar 

  21. Su LT, Goodson KE, Antoniadis DA, Flik MI, Chung JE (1992) Measurement and modeling of self-heating effects in SOI nMOSFETs. Int Electron Devices Mtg 13–16

    Google Scholar 

  22. Wei J (2008) Challenges in cooling design of CPU packages for high-performance servers. Heat Transfer Engineering 29:178–187

    Article  Google Scholar 

  23. Intel (2008) Intel Core2 Duo processor E8000 and E7000 series datasheet. [Online] http://download.intel.com/design/processor/datashts/318732.pdf

  24. Intel (2008) Intel Core2 Extreme processor QX9000 series and Intel Core2 Quad processor Q9000 and Q8000 series datasheet. [Online] http://download.intel.com/design/processor/datashts/318726.pdf

  25. Pollack F (1999) New microprocessor challenges in the coming generations of CMOS technologies. 32nd Ann ACM/IEEE Int Symp on Microarchitecture 2

    Google Scholar 

  26. Intel (2005) Intel Pentium 4 Processor 6xx Sequence and Intel Pentium 4 Processor Extreme Edition datasheet. [Online] http://download.intel.com/design/processor/datashts/318726.pdf

  27. Wong HP, Frank DJ, Solomon PM, Wann CHJ, Welser JJ (1999) Nanoscale CMOS. Proc IEEE 47:537–570

    Article  Google Scholar 

  28. Lin CL, Yeh WK (2011) Impact of SOI thickness on device performance and gate oxide reliability of Ni fully silicide metal-gate strained SOI MOSFET. Microelectronic Engineering 88:228–234

    Article  Google Scholar 

  29. US Dept of Defense (2007) Integrated circuits (microcircuits) manufacturing, general specification, std MIL-PRF-38535H. Washington DC

    Google Scholar 

  30. Sato T, Ichimiya J, Ono N, Hachiya K, Hashimoto M (2005) On-chip thermal gradient analysis and temperature flattening for SoC design. IEICE Trans Fundamentals E88-A: 3382–3389

    Article  Google Scholar 

  31. Dinh JS, Korinsky GK (1996) Temperature dependent fan control circuit for personal computer. US Patent 5526289

    Google Scholar 

  32. Tschanz J et al (2007) Adaptive frequency and biasing techniques for tolerance to dynamic temperature-voltage variations and aging. IEEE Int Solid-State Circuits Conf 292–604

    Google Scholar 

  33. Elgebaly M, Sachdev M (2007) Variation-aware adaptive voltage scaling system. IEEE Trans Very Large Scale Integr Syst 15:560–571

    Article  Google Scholar 

  34. Narendra SG, Chandrakasan AP (2005) Leakage in nanometer CMOS technologies. Springer:USA

    Google Scholar 

  35. Vassighi A, Semenov O, Sachdev M, Keshavarzi A, Hawkins C (2004) CMOS IC technology scaling and its impact on burn-in. IEEE Trans Device and Materials Reliability 4:208–221

    Article  Google Scholar 

  36. IBM (2010) Power your planet: Smarter systems for a smarter planet. Presentation

    Google Scholar 

  37. Gwennap L (2010) Two-headed snapdragon takes flight: Qualcomm samples dual-CPU mobile processor at 1.2 GHz. The Linley Group

    Google Scholar 

  38. Yu H, Hu Y, Liu C, He L (2007) Minimal skew clock embedding considering time variant temperature gradient. Int Symp Physical Design 173–180

    Google Scholar 

  39. Dasdan A, Hom I (2006) Handling inverted temperature dependence in static timing analysis. ACM Trans Design Automation of Electronic Syst 11:306–324

    Article  Google Scholar 

  40. Nakagomi S et al (1997) Influence of carbon monoxide, water and oxygen on temperature catalytic metal-oxide-silicon carbide structures. Sensors and Actuators B 45:183–191

    Article  Google Scholar 

  41. Pavlidis VF, Friedman EG (2008) Three-dimensional integrated circuit design. Morgan Kaufmann:MA

    Google Scholar 

  42. Gochman S et al (2003) The Intel Pentium M processor: microarchitecture and performance. Intel Tech J 7:21–38

    Google Scholar 

  43. Advanced Micro Devices (2002) AMD PowerNow! technology brief. [Online] http://www.amd.com/us-en/assets/content_type/DownloadableAssets/Power_Now2.pdf

  44. McCreary HY et al (2007) EnergyScale for IBM Power6 microprocessor-based systems. IBM J Res and Dev 51:775–786

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Wolpert .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wolpert, D., Ampadu, P. (2012). The Role of Temperature in Electronic Design. In: Managing Temperature Effects in Nanoscale Adaptive Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0748-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0748-5_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0747-8

  • Online ISBN: 978-1-4614-0748-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics