Skip to main content

The Osteochondral Unit

  • Chapter
  • First Online:
Cartilage Restoration

Abstract

After years of solely focusing on the importance of restoring the articular surface, increased attention is being given to the condition of the subchondral bone. Changes such as edema, intra-lesional osteophytes, and cysts, can influence subsequent cartilage repair. Several causative factors have been identified, including chronic defects, as well as prior treatment with marrow stimulation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brandt KD, Radin EL, Dieppe PA, Putte L van de. Yet more evidence that osteoarthritis is not a cartilage disease. Ann Rheum Dis. 2006;65(10):1261–4.

    Article  PubMed  CAS  Google Scholar 

  2. Armstrong CG. An analysis of the stresses in a thin layer of articular cartilage in a synovial joint. Eng Med. 1986;15(2):55–61.

    Article  PubMed  CAS  Google Scholar 

  3. Burr DB, Radin EL. Microfractures and microcracks in subchondral bone: are they relevant to osteoarthrosis? Rheum Dis Clin North Am. 2003;29(4):675–85.

    Article  PubMed  Google Scholar 

  4. Kreuz PC, Steinwachs MR, Erggelet C, Krause SJ, Konrad G, Uhl M, Sudkamp N. Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthr Cartilage. 2006;14(11):1119–25.

    Article  CAS  Google Scholar 

  5. Mithoefer K, Williams RJ 3rd, Warren RF, Potter HG, Spock CR, Jones EC, Wickiewicz TL, Marx RG. The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am. 2005;87(9):1911–20.

    Article  PubMed  Google Scholar 

  6. Dorotka R, Bindreiter U, Macfelda K, Windberger U, Nehrer S. Marrow stimulation and chondrocyte transplantation using a collagen matrix for cartilage repair. Osteoarthr Cartilage. 2005;13(8):655–64.

    Article  CAS  Google Scholar 

  7. Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res. 1986;213:34–40.

    PubMed  Google Scholar 

  8. Simon WH. Scale effects in animal joints. I. Articular cartilage thickness and compressive stress. Arthritis Rheum. 1970;13(3):244–56.

    Article  Google Scholar 

  9. Gillogly SD. Treatment of large full-thickness chondral defects of the knee with autologous chondrocyte implantation. Arthroscopy. 2003;19(Suppl 1):147–53.

    PubMed  Google Scholar 

  10. Peterson L, Minas T, Brittberg M, Lindahl A. Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg Am. 2003;85-A(Suppl 2):17–24.

    Google Scholar 

  11. Peterson L, Minas T, Brittberg M, Nilsson A, Sjogren-Jansson E, Lindahl A. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res. 2000;374:212–34.

    Article  PubMed  Google Scholar 

  12. Miller JD, McCreadie BR, Hankenson KD, Goldstein S. Bone: Form and function. In Einhorn TA, O’Keefe RJ, Buckwalter JA, Editors. Orthopaedic basic science foundations of clinical practice. Doody Enterprises; 2007.

    Google Scholar 

  13. Brown TD, Radin EL, Martin RB, Burr DB. Finite element studies of some juxtarticular stress changes due to localized subchondral stiffening. J Biomech. 1984;17(1):11–24.

    Article  PubMed  CAS  Google Scholar 

  14. Wei HW, Sun SS, Jao SH, Yeh CR, Cheng CK. The influence of mechanical properties of subchondral plate, femoral head and neck on dynamic stress distribution of the articular cartilage. Med Eng Phys. 2005;27(4):295–304.

    Article  PubMed  Google Scholar 

  15. Gomoll AH, Madry H, Knutsen G, Dijk N van, Seil R, Brittberg M, Kon E. The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):434–47.

    Article  PubMed  Google Scholar 

  16. Roemer FW, Frobell R, Hunter DJ, Crema MD, Fischer W, Bohndorf K, Guermazi A. MRI-detected subchondral bone marrow signal alterations of the knee joint: terminology, imaging appearance, relevance and radiological differential diagnosis. Osteoarthr Cartilage. 2009;17(9):1115–31.

    Article  CAS  Google Scholar 

  17. Roemer FW, et al. Subchondral bone marrow lesions are highly associated with, and predict subchondral bone attrition longitudinally: the MOST study. Osteoarthr Cartilage. 2010;18(1):47–53.

    Article  CAS  Google Scholar 

  18. Schneider E, Lo GH, Sloane G, Fanella L, Hunter DJ, Eaton CB, McAlindon TE. Magnetic resonance imaging evaluation of weight-bearing subchondral trabecular bone in the knee. Skeletal Radiol. 2011;40(1):95–103.

    Article  PubMed  Google Scholar 

  19. Zanetti M, Bruder E, Romero J, Hodler J. Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology. 2000;215(3):835–40.

    PubMed  CAS  Google Scholar 

  20. Murphy BJ, Smith RL, Uribe JW, Janecki CJ, Hechtman KS, Mangasarian RA. Bone signal abnormalities in the posterolateral tibia and lateral femoral condyle in complete tears of the anterior cruciate ligament: a specific sign? Radiology. 1992;182(1):221–4.

    PubMed  CAS  Google Scholar 

  21. Virolainen H, Visuri T, Kuusela T. Acute dislocation of the patella: MR findings. Radiology. 1993;189(1):243–6.

    PubMed  CAS  Google Scholar 

  22. Theologis AA, Kuo D, Cheng J, Bolbos RI, Carballido-Gamio J, Ma CB, Li X. Evaluation of bone bruises and associated cartilage in anterior cruciate ligament-injured and -reconstructed knees using quantitative t(1rho) magnetic resonance imaging: 1-year cohort study. Arthroscopy. 2011;27(1):65–76.

    Article  PubMed  Google Scholar 

  23. Niemeyer P, Salzmann G, Steinwachs M, Sudkamp NP, Schmal H, Lenz P, Kostler W. Presence of subchondral bone marrow edema at the time of treatment represents a negative prognostic factor for early outcome after autologous chondrocyte implantation. Arch Orthop Trauma Surg. 2010;130(8):977–83.

    Article  PubMed  Google Scholar 

  24. Hayter C, Potter H. Magnetic resonance imaging of cartilage repair techniques. J Knee Surg. 2011;24(4):225–40.

    Article  PubMed  Google Scholar 

  25. Potter HG, Chong le R, Sneag DB. Magnetic resonance imaging of cartilage repair. Sports Med Arthrosc. 2008;16(4):236–45.

    Article  PubMed  Google Scholar 

  26. Welsch GH, Zak L, Mamisch TC, Resinger C, Marlovits S, Trattnig S. Three-dimensional magnetic resonance observation of cartilage repair tissue (MOCART) score assessed with an isotropic three-dimensional true fast imaging with steady-state precession sequence at 3.0 Tesla. Invest Radiol. 2009;44(9):603–12.

    Article  PubMed  Google Scholar 

  27. Pridie K. A method of resurfacing knee joints. J Bone Joint Surg Br. 1959;41:618–9.

    Google Scholar 

  28. Johnson LL. Arthroscopic abrasion arthroplasty: a review. Clin Orthop Relat Res. 2001;(391 Suppl):S306–17.

    Google Scholar 

  29. Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res. 2001;(391 Suppl):S362–9.

    Google Scholar 

  30. Chen H, Chevrier A, Hoemann CD, Sun J, Ouyang W, Buschmann MD. Characterization of subchondral bone repair for marrow-stimulated chondral defects and its relationship to articular cartilage resurfacing. Am J Sports Med. 2011;39(8):1731–40.

    Article  PubMed  Google Scholar 

  31. Chen H, Hoemann CD, Sun J, Chevrier A, McKee MD, Shive MS, Hurtig M, Buschmann MD. Depth of subchondral perforation influences the outcome of bone marrow stimulation cartilage repair. J Orthop Res. 2011;29(8):1178–84.

    Article  PubMed  Google Scholar 

  32. Chen H, Sun J, Hoemann CD, Lascau-Coman V, Ouyang W, McKee MD, Shive MS, Buschmann MD. Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. J Orthop Res. 2009;27(11):1432–8.

    Article  PubMed  Google Scholar 

  33. Orth P, et al. Effect of subchondral drilling on the microarchitecture of subchondral bone: analysis in a large animal model at 6 months. Am J Sports Med. 2012;40(4):828–36.

    Article  PubMed  Google Scholar 

  34. Frisbie DD, Morisset S, Ho CP, Rodkey WG, Steadman JR, Mcllwraith CW. Effects of calcified cartilage on healing of chondral defects treated with microfracture in horses. Am J Sports Med. 2006;34(11):1824–31.

    Article  PubMed  Google Scholar 

  35. Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med. 2009;37(10):2053–63.

    Article  PubMed  Google Scholar 

  36. Steadman JR, Rodkey WG, Briggs KK. Microfracture to treat full-thickness chondral defects: surgical technique, rehabilitation, and outcomes. J Knee Surg. 2002;15(3):170–6.

    PubMed  Google Scholar 

  37. Rechenberg B von, Akens MK, Nadler D, Bittmann P, Zlinszky K, Kutter A, Poole AR, Auer JA. Changes in subchondral bone in cartilage resurfacing—an experimental study in sheep using different types of osteochondral grafts. Osteoarthr Cartilage. 2003;11(4):265–77.

    Article  Google Scholar 

  38. Gortz S, Bugbee WD. Allografts in articular cartilage repair. J Bone Joint Surg Am. 2006;88(6):1374–84.

    PubMed  Google Scholar 

  39. Saris DB, Vanlauwe J, Victor J, Almqvist KF, Verdonk R, Bellemans J, Luyten FP. Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med. 2009;37(Suppl 1):10–19S.

    Google Scholar 

  40. Minas T, Gomoll AH, Rosenberger R, Royce RO, Bryant T. Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med. 2009;37(5):902–8.

    Article  PubMed  Google Scholar 

  41. Pestka JM, Bode G, Salzmann G, Sudkamp NP, Niemeyer P. Clinical outcome of autologous chondrocyte implantation for failed microfracture treatment of full-thickness cartilage defects of the knee joint. Am J Sports Med. 2011;40(2):325–31.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas H. Gomoll M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gomoll, A., Farr, J. (2014). The Osteochondral Unit. In: Farr, J., Gomoll, A. (eds) Cartilage Restoration. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0427-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0427-9_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0426-2

  • Online ISBN: 978-1-4614-0427-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics