Skip to main content

Models of Complex Partial Seizures: Animal Studies

  • Chapter
  • First Online:
Epilepsy
  • 1943 Accesses

Abstract

In the most general way, seizures can be classified as partial or generalized. Partial seizures have a regional (focal) cerebral localization, whereas generalized (tonic–clonic) seizures occur throughout the brain. Partial complex seizures are common, occurring in about one-third of epilepsy patients. Complex partial seizure activity is also quite common in laboratory rats and mice, as well as many other animals. Complex partial seizures are characterized by: impairment of consciousness, an immediately preceding event called an aura (simple partial seizure), automatisms, and usually arise from the temporal lobe, hence are also called temporal lobe ­seizures. The nature of the impairment of consciousness is variable and may range from an inability of the patient to respond to simple commands, to an inability to respond at all.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • McCandless, D.W. and FineSmith, R. (1992) Animal models of experimental seizures. In: Animal models of neurological disease II. Bolton, A., Baker, G., and Butterworth, R., eds. Humana Press, Baltimore, pp 133-150

    Google Scholar 

  • Abel, M., and McCandless, D.W. (1992) The kindling model of epilepsy. In: Animal models of neurological disease II, Bolton, A., Baker, G., and Butterworth, R., eds. Humana Press, Baltimore, pp 153-168

    Chapter  Google Scholar 

  • Goddard, G. (1967) Development of epileptic seizures through brain stimulation at low intensity. Nature 214:1020–1021

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi, K., et al. (1959) The epilepsy like abnormalities in a strain of mice. Jpn. J. Pharmacol. 29:503–507

    Google Scholar 

  • Suzuki, J. (1976) Paroxysmal discharges in the electroencephalogram of the EL mouse. Experiment. 15: 336–338

    Article  Google Scholar 

  • Hochi, T., et al. (1987) Electron microscopic study of mossy fiber endings of the hippocampal formation in EL mice. Acta. Med. Okayama 41:81–84

    PubMed  CAS  Google Scholar 

  • Tober, C., et al. (1996) D-23129: a potent anticonvulsant in the amygdala kindling model of complex partial seizures. Euro. J. Pharm. 303:163–169

    Article  CAS  Google Scholar 

  • Depaulis, A., et al. (1997) Anxiogenic like consequences in animal models of complex partial seizures. Neurosci. And Biobehav Reviews 21:767–774

    Article  CAS  Google Scholar 

  • Raedt, R., and Boon, P. (2005) Cell therapy for neurological disorders: a comprehensive review. Acta Neurol. Belg. 105:158–170

    PubMed  Google Scholar 

  • Thom, S., et al. (2002) Cytoarchitectural abnormalities in hippocampal sclerosis. J. Neuropath Exp Neurol 61:510–519

    PubMed  Google Scholar 

  • Salmenpera, R., et al. (2001) Hippocampal and amygdala damage in partial epilepsy-a cross sectional MRI study of 241 patients. Epil Res 46:69–82

    Article  CAS  Google Scholar 

  • Cavazos, J., Golarai, G., and Sutula, T. (1991) Mossy fiber synaptic reorganization induced by kindling: time course of development, progression, and permanence. J. Neurosci. 11:2795–2803

    PubMed  CAS  Google Scholar 

  • Scharfman, H., Goodman, J., and Sollas, A. (2000) Granule like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 bpyramidal cells: functional implications of seizure induced neurogenesis. J. Neurosci. 20:6144–6158

    PubMed  CAS  Google Scholar 

  • Shetty, A., and Turner, D. (2000) Fetal hippocampal glutamate decarboxylase positive interneuron numbers in a rat model of temporal lobe epilepsy. J. Neurosci. 20:8788–8801

    PubMed  CAS  Google Scholar 

  • Zaman, V., and Shetty, A. (2001) Fetal hippocampal CA3 cell grafts transplanted to lesioned CA3 region of the adult hippocampus exhibit long term survival in a rat model of temporal lobe epilepsy. Neurobiol. Dis. 8:943–952

    Article  Google Scholar 

  • Nakatomi, H., et al. (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenators. Cell 110:429–441

    Article  PubMed  CAS  Google Scholar 

  • Englot, D., and Blumenfeld, H. (2009) Consciousness and epilepsy: why are complex partial seizures complex? Prog Brain Res 177:147–170

    Article  PubMed  Google Scholar 

  • Kraev, I., et al. (2009) Partial kindling induces neurogenesis, activates astrocytes and alters synaptic morphology in the dentate gyrus of freely moving adult rats. Neurosci. 18:254–267

    Article  Google Scholar 

  • Chuang, Y., et al. (2009) Contribution of nitric oxide, superoxide anion, and peroxynitrate to activation of mitochondrial apoptotic signaling in hippocampal CA3 subfield following experimental temporal lobe status epilepticus. Epilepsia 50:731–746

    Article  PubMed  CAS  Google Scholar 

  • Kuzniecky, R., et al. (1993) Magnetic resonance imaging in childhood intractable partial epilepsies: pathological correlations. Neurology 43:681–687

    PubMed  CAS  Google Scholar 

  • Brown, W. (1973) Structural substrate of seizure foci in the temporal lobe. In: Brazier, M., ed. Epilepsy: its phenomena in man. Acad. Press, N.Y. pp 339-374

    Google Scholar 

  • Brown, W., and Babb, T. (1987) Central pathological considerations of complex partial seizures. In: Hopkins, A., ed. Epilepsy Chapman and Hall, London pp 261-277

    Google Scholar 

  • Delgado-Escueta, A., et al. (1981) The nature of aggression during epileptic seizures. N Eng J Med 305:711–716

    Article  CAS  Google Scholar 

  • Manford, M., et al. (1992) National general practice study of epilepsy (NGPSE) : partial seizure patterns in a general population. Neurology 42:1911–1917

    PubMed  CAS  Google Scholar 

  • Sardo, P., et al. (2009)In the rat maximal dentate activation model of partial complex epilepsy, the anticonvulsant activity of levetiracetam is modulated by nitric oxide active drugs. J. Neural. Trans. 116:831–839

    Google Scholar 

  • Ferraro, G., and Sardo, P. (2009) Cholecystokinin-8 sulfate modulates the anticonvulsant efficacy of vigabatrin in an experimental model of partial complex epilepsy. Epilepsia 50:721–730

    Article  PubMed  CAS  Google Scholar 

  • Dube, C., Brewster, A., and Baram, T. (2009) Febrile seizures: mechanisms and relationship to epilepsy. Brain Dev 5:366–371

    Article  Google Scholar 

  • McCandless, D. (2010) Thiamine deficiency and associated clinical disorders. Springer, N. Y.

    Google Scholar 

  • Turski, W., et al. (1983) Cholinomimetics produce seizures and brain damage in rats. Experentia 39:1408–1411

    Article  CAS  Google Scholar 

  • Kudin, A., et al. (2002) Seizure dependent modulation of mitochondrial oxidative phosphorylation in rat hippocampus. Euro. J. Neurosci. 16:1105–1114

    Article  Google Scholar 

  • Yamamoto, H., and Tang, H. (1996) Preventive effect of melatonin against cyanide induced seizures and lipid peroxidation in mice. Neurosci. Letters207:89–92

    Article  CAS  Google Scholar 

  • Urbanska, E., et al. (1998) Mitochondrial toxin 3-nitropropionic acid evokes seizures in mice. Eur. J. Pharmacol. 369:55–58

    Article  Google Scholar 

  • Bindokas, V., et al. (1998) Changes in mitochondrial function resulting from synaptic activity in the rat hippocampal slice. J. Neurosci. 18:4570–4587

    PubMed  CAS  Google Scholar 

  • Dulla, C., et al. (2005) Adenosine and ATP link Pco2 to cortical excitability via pH. Neuron 48:1011–1023

    Article  PubMed  CAS  Google Scholar 

  • Pascual, O., et al. (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116

    Article  PubMed  CAS  Google Scholar 

  • King, L., et al. (1967) Effects of convulsants on energy reserves in the cerebral cortex. J. Neurochem. 14:599–611

    Article  PubMed  CAS  Google Scholar 

  • Collins, R.C., Posner, J., and Plum, F. (1970) Cerebral energy metabolism during electroshock seizures in mice. Amer. J. Physiol. 218:943–950

    PubMed  CAS  Google Scholar 

  • Collins, R. C., et al. (1976) Metabolic anatomy of focal motor seizures. Arch. Neurology 33:536–542

    CAS  Google Scholar 

  • Walker, A., Johnson, H., and Kollros, J. (1945) Penicillin convulsions: the convulsant effects of penicillin applied to the cerebral cortex of monkey and man. Surg. Gynecol. Obstet. 81:692–703

    PubMed  CAS  Google Scholar 

  • Sokoloff, L., et al. (1977) The 14C deoxyglucose method for the measurement of local cerebral utilation: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28:897–916

    Article  PubMed  CAS  Google Scholar 

  • Lust, W. D., et al. (1978) Changes in brain metabolites induced by convulsants or electroshock: effects of anticonvulsant agents. Molec. Pharmacol. 14:347–356

    CAS  Google Scholar 

  • McCandless, D. W., et al. (1979) Metabolite levels in brain following experimental seizures: the effects of maximal electroshock and phenytoin in cerebellar layers. J. Neurochem:32:743–753

    Google Scholar 

  • McCandless, D. W., et al. (1979) Metabolite levels in brain following experimental seizures: effects of isoniazid and sodium valproate in cerebellar and cerebral cortical layers. J. Neurochem. 32: 755–760

    Article  PubMed  CAS  Google Scholar 

  • McCandless, D. W., et al. (1986) Status epilepticus induced changes in primate cortical energy metabolism. Amer. J. Physiol. 251:C774-C779

    PubMed  CAS  Google Scholar 

  • McCandless, D. W., et al. (1979) Sparing of metabolic stress in Purkinje cells after maximal electroshock. Proc. Natl. Acad. Science 76:1482–1484

    Article  CAS  Google Scholar 

  • Passonneau, J., and Lowry, O. (1993) Enzymatic Analysis: a practical guide. Humana Press, Totowa N.J.

    Google Scholar 

  • Passonneau, J., Lust, W.D., and McCandless, D.W. (1980) Fixation and extraction of viable tissues. In: Techniques in Metabolic Research. C. Pogson, ed. Elsevier Pub. Co. pp 1–27

    Google Scholar 

  • McCandless, D.W., et al. (1987) Pentylenetetrazole induced changes in cerebral energy metabolism in Tupaia Glis. Epilepsia 28:184–189

    Article  PubMed  CAS  Google Scholar 

  • Duffy, T., Howse, D., and Plum, F (1975) Cerebral energy metabolism during status epilepticus. J. Neurochem. 24:925–934

    Article  PubMed  CAS  Google Scholar 

  • Collins, R.C., Tearse, R., and Lothman, E. (1983) Functional anatomy of limbic seizures: focal discharges from medial entorhinal cortex in rat. Brain Res. 280:25–40

    Article  PubMed  CAS  Google Scholar 

  • Lothman, E., and Collins, R.C. (1981) Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathological correlates. Brain Res. 218: 299–318

    Article  PubMed  CAS  Google Scholar 

  • McCandless, D. W., Mintun, M., and Collins, R. C. (1986) Comparison of 6-14C-glucose and 14C DG quantitative autoradiography. Trans. Amer. Soc. Neurochem. 17:173

    Google Scholar 

  • Dworsky, S., and McCandless, D.W. (1987) Regional cerebral energy metabolism in bicuculline induced seizures. Neurochem. Res. 12:237–240

    Article  PubMed  CAS  Google Scholar 

  • Chung, S., (2009) Lacosamide: pharmacology, action and efficacy in partial onset seizures. Expt Rev Neurother. 9:33–42

    Article  Google Scholar 

  • Ohr, T., et al. (2007) Lacosamide, a novel anti-convulsant drug shows efficacy with a wide safety margin. Epil. Res. pil. Res. 74:147–154

    Google Scholar 

  • Beyreuther, B., et al. (2007) Lacosamide: a review of preclinical properties. CNS Drug Rev, 13:21–42

    Article  PubMed  CAS  Google Scholar 

  • Parekh, M., et al. (2010) Early MR diffusion and relaxation changes in the parahippocampal gyrus precede the onset of spontaneous seizures in an animal model of chronic limbic epilepsy. Exper. Neurol. Doi:10.1016/j

    Google Scholar 

  • Lothman, E., et al. (1990) Recurrent spontaneous hippocampal seizures in the rat as a chronic sequela to limbic status epilepticus. Epil. Res. 6:110–118

    Article  CAS  Google Scholar 

  • Annegers, J., et al. (1987) Factors prognostic of unprovoked seizures after febrile convulsions. N. Eng. J. Med. 316:493–498

    Article  CAS  Google Scholar 

  • Koyama, R., and Matsuki, N. (2010) Novel etiological therapeutic strategies for neurodiseases: mechanisms and consequences of febrile seizures: lessons from animal models. J. Pharm. Sci. doi:10.1254/jphs.o9r19fm

  • Dube, C., et al. (2006) Temporal lobe epilepsy after experimental prolonged febrile seizures. Brain 129:911–922

    Article  PubMed  Google Scholar 

  • Dube, C., et al. (2005) Interleukin 1 beta contributes to the generation of experimental febrile seizures. Ann. Neurol. 57:152–155

    Article  PubMed  CAS  Google Scholar 

  • Schuchmann, S., Vanhatalo, S., and Kaila, K. (2009) Neurobiological and physiological mechanisms of fever related epileptiform syndromes. Brain Dev. 31:378–382

    Article  PubMed  Google Scholar 

  • Toth, Z., et al. (1998) Seizure induced neuronal injury: vulnerability to febrile seizures in an immature rat model. J. Neurosci. 18:4285–4294

    PubMed  CAS  Google Scholar 

  • Lemmens, E., et al. (2008) Cytognesis in the dentate gyrus after neonatal hyperthermia induced seizures: what becomes of surviving cells. Epilepsia 49:853–860

    Article  PubMed  Google Scholar 

  • Gill, D., Ramsay, S., and Tasker, R. (2010) Selective reductions in subpopulations of GABAergic neurons in a developmental rat model of epilepsy. Brain Res. Doi:10.1016j/2010.03.054

    Google Scholar 

  • Chen, J., et al. (2010) Effects of lamotrigine and topiramate on hippocampal neurogenesis in experimental temporal lobe epilepsy. Brain Res. 1313:270–282

    Article  PubMed  CAS  Google Scholar 

  • Dube, C., et al. (2000) Prolonged febrile seizures in the immature rat model enhance hippocampal excitability in limbic circuits. Nat. Med. 5:888–894

    Google Scholar 

  • Vielhaber, S., et al. (2003) Hippocampal N-acetyl aspartate levels do not mirror neuronal cell densities in creatine supplimented epileptic rats. Euro J Neurosci. 18:2292–2300

    Article  Google Scholar 

  • Suzuki, J., Nakamoto, Y., and Shinkawa, Y. (1983) Local cerebral glucose utilization in epileptic seizures of the mutant E1 mouse Brain Res 266:359–363

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McCandless, D.W. (2012). Models of Complex Partial Seizures: Animal Studies. In: Epilepsy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0361-6_14

Download citation

Publish with us

Policies and ethics