Skip to main content

Molecular Networks and Complex Diseases

  • Chapter
  • First Online:
Functional Coherence of Molecular Networks in Bioinformatics

Abstract

Many human diseases are based on a set of complex interactions among multiple genetic and environmental factors. Recent developments in biotechnology have enabled interrogation of the cell at various levels leading to many types of “omic” data that provide valuable information on these factors and their interactions. These data include (1) genomic data, which reveals possible genetic factors involved in disease, (2) transcriptomic data, which reveals changes in regulation of gene expression, and (3) proteomic data, which reveals irregularities in the amount of functional proteins in affected tissues. While these data are very useful in understanding differences between disease phenotypes, they provide information at the level of a single molecular type. To integrate these disparate data types, molecular network analysis is invaluable in uncovering the relations between disparate molecular targets and understanding disease development and progression at the systems level. This chapter provides an overview of current findings on the systems biology of human diseases in the context of molecular networks and outlines current computational approaches in network biology of human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Adie, R. Adams, K. Evans, D. Porteous, and B. Pickard. SUSPECTS: enabling fast and effective prioritization of positional candidates. Bioinformatics, 22(6):773–774, 2006.

    Article  PubMed  CAS  Google Scholar 

  2. A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos, A. Rosenwald, J. C. Boldrick, H. Sabet, T. Tran, X. Yu, John I. Powell, Liming Yang, Gerald E. Marti, Troy Moore, Jr James Hudson, Lisheng Lu, David B. Lewis, Robert Tibshirani, Gavin Sherlock, Wing C. Chan, Timothy C. Greiner, Dennis D. Weisenburger, James O. Armitage, Roger Warnke, Ronald Levy, Wyndham Wilson, Michael R. Grever, John C. Byrd, David Botstein, Patrick O. Brown, and Louis M. Staudt. Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature, 403:503–511, Feb 2000.

    Google Scholar 

  3. Dimitris Anastassiou. Computational analysis of the synergy among multiple interacting genes. Mol Syst Biol, 3(83), 2007.

    Google Scholar 

  4. G. Bebek and J. Yang. PathFinder: Mining signal transduction pathway segments from protein protein interaction networks. BMC Bioinformatics, 8(335), 2007.

    Google Scholar 

  5. M. Beckerman. Molecular and Cellular Signaling. Springer, 2006.

    Google Scholar 

  6. D. G. Beer, S. L. Kardia, C. C. Huang, T. J. Giordano, A. M. Levin, D. E. Misek, L. Lin, G. Chen, T. G. Gharib, D. G. Thomas Michelle, L. Lizyness, Rork Kuick, Satoru Hayasaka, Jeremy M.G. Taylor, Mark D. Iannettoni, Mark B. Orringer, and Samir Hanash. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med., 8:816–824, 2002.

    Google Scholar 

  7. Annamaria Bevilacqua, Maria Cristina Ceriani, Sergio Capaccioli, and Angelo Nicolin. Post-transcriptional regulation of gene expression by degradation of messenger RNAs. Journal of Cellular Physiology, 195(3):356–372, 2003.

    Google Scholar 

  8. Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine. In Computer Networks and ISDN Systems, volume 30, pages 107–117, 1998.

    Google Scholar 

  9. Han G. Brunner and Marc A. van Driel. From syndrome families to functional genomics. Nat Rev Genet, 5(7):545–551, 2004.

    Article  PubMed  CAS  Google Scholar 

  10. Lawrence Cabusora, Electra Sutton, Andy Fulmer, and Christian V. Forst. Differential network expression during drug and stress response. Bioinformatics, 21(12):2898–2905, 2005.

    Article  PubMed  CAS  Google Scholar 

  11. J. F. Cáceres and A. R. Kornblihtt. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet, 18(4):186–193, April 2002.

    Article  PubMed  Google Scholar 

  12. J. Chang, M. R. Chance, C. Nicholas, N. Ahmed, S. Guilmeau, M. Flandez, D. S. Wyun D. Wang, S. Nasser, and J. M. Albanese. Proteomic changes during intestinal cell maturation in vivo. J Proteomics, 71(5):530–546, 2008.

    Google Scholar 

  13. Jing Chen, Bruce Aronow, and Anil Jegga. Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinformatics, 10(1):73, 2009.

    Google Scholar 

  14. Jing Chen, Eric E. Bardes, Bruce J. Aronow, and Anil G. Jegga. Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids research, 37(Web Server issue):gkp427+, July 2009.

    Google Scholar 

  15. Salim A. Chowdhury and Mehmet Koyutürk. Identification of coordinately dysregulated subnetworks in complex phenotypes. In Pacific Symposium on Biocomputing, pages 133–144, 2010.

    Google Scholar 

  16. Salim A. Chowdhury, Rod K. Nibbe, Mark R. Chance, and Mehmet Koyutürk. Subnetwork state functions define dysregulated subnetworks in cancer. In 14th Intl Conf. Research in Computational Molecular Biology (RECOMB10), pages 80–95, 2010.

    Google Scholar 

  17. Hon Nian Chua, Wing-Kin Sung, and Limsoon Wong. Exploiting indirect neighbours and topological weight to predict protein function from protein–protein interactions. Bioinformatics, 22(13):1623–1630, 2006.

    Google Scholar 

  18. Han-Yu Chuang, Eunjung Lee, Yu-Tsueng Liu, Doheon Lee, and Trey Ideker. Network-based classification of breast cancer metastasis. Mol Syst Biol, 3, October 2007.

    Google Scholar 

  19. Şerban Nacu, Rebecca Critchley-Thorne, Peter Lee, and Susan Holmes. Gene expression network analysis and applications to immunology. Bioinformatics, 23(7):850–858, 2007.

    Article  PubMed  CAS  Google Scholar 

  20. Lyris M. F. de Godoy, Jesper V. Olsen, Jürgen Cox, Michael L. Nielsen, Nina C. Hubner, Florian Fröhlich, Tobias C. Walther, and Matthias Mann. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature, 2008.

    Google Scholar 

  21. Sinan Erten and Mehmet Koyutürk. Role of centrality in network-based prioritization of disease genes. In Proceedings of the 8th European Conf. Evolutionary Computation, Machine Learning, and Data Mining in Bioinformatics (EVOBIO’10), volume LNCS 6023, pages 13–25, 2010.

    Google Scholar 

  22. Rob M. Ewing, Peter Chu, Fred Elisma, Hongyan Li, Paul Taylor, Shane Climie, Linda McBroom-Cerajewski, Mark D. Robinson, Liam O’Connor, Michael Li, Rod Taylor, Moyez Dharsee, Yuen Ho, Adrian Heilbut, Lynda Moore, Shudong Zhang, Olga Ornatsky, Yury V. Bukhman, Martin Ethier, Yinglun Sheng, Julian Vasilescu, Mohamed Abu-Farha, Jean-Philippe P. Lambert, Henry S. Duewel, Ian I. Stewart, Bonnie Kuehl, Kelly Hogue, Karen Colwill, Katharine Gladwish, Brenda Muskat, Robert Kinach, Sally-Lin L. Adams, Michael F. Moran, Gregg B. Morin, Thodoros Topaloglou, and Daniel Figeys. Large-scale mapping of human protein-protein interactions by mass spectrometry. Molecular systems biology, 3, 2007.

    Google Scholar 

  23. L. Franke, H. Bakel, L. Fokkens, E. D. de Jong, M. Egmont-Petersen, and C. Wijmenga. Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am J Hum Genet, 78(6):1011–1025, June 2006.

    Article  PubMed  CAS  Google Scholar 

  24. D. B. Friedman, S. Hill, J. W. Keller, N. B. Merchant, S. E. Levy, R. J. Coffey, and R. M. Caprioli. Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics, 4(3):793–811, March 2004.

    Article  PubMed  CAS  Google Scholar 

  25. S. Ghaemmaghami, W. K. Huh, K. Bower, R. W. Howson, A. Belle, N. Dephoure, E. K. O’Shea, and J. S. Weissman. Global analysis of protein expression in yeast. Nature, 425(6959):737–741, October 2003.

    Article  PubMed  CAS  Google Scholar 

  26. Anne M. Glazier, Joseph H. Nadeau, and Timothy J. Aitman. Finding Genes That Underlie Complex Traits. Science, 298(5602):2345–2349, 2002.

    Article  PubMed  CAS  Google Scholar 

  27. Kwang-Il Goh, Michael E. Cusick, David Valle, Barton Childs, Marc Vidal, and Albert-Lászlà Barabási. The human disease network. PNAS, 104(21):8685–8690, 2007.

    Google Scholar 

  28. T. R. Golub, D. K. Slonim, P. Tamayo, M. Gaasenbeek C. Huard, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286:531–537, Oct 1999.

    Article  PubMed  CAS  Google Scholar 

  29. T. J. Griffin, S. P. Gygi, T. Ideker, B. Rist, J. Eng, L. Hood, and R. Aebersold. Complementary profiling of gene expression at the transcriptome and proteome levels in saccharomyces cerevisiae. Molecular & Cellular Proteomics, 1(4):323–333, April 2002.

    Article  CAS  Google Scholar 

  30. Zheng Guo, Yongjin Li, Xue Gong, Chen Yao, Wencai Ma, Dong Wang, Yanhui Li, Jing Zhu, Min Zhang, Da Yang, and Jing Wang. Edge-based scoring and searching method for identifying condition-responsive protein–protein interaction sub-network. Bioinformatics, 23(16): 2121–2128, 2007.

    Article  PubMed  CAS  Google Scholar 

  31. Daniel Hanisch, Alexander Zien, Ralf Zimmer, and Thomas Lengauer. Co-clustering of biological networks and gene expression data. In ISMB, pages 145–154, 2002.

    Google Scholar 

  32. G. J. Hannon. Rna interference. Nature, 418(6894):244–251, July 2002.

    Article  PubMed  CAS  Google Scholar 

  33. Vassily Hatzimanikatis and Kelvin H. Lee. Dynamical analysis of gene networks requires both mRNA and protein expression information. Metabolic Engineering, 1(4):275–281, 1999. 3-6 FIELD Section Title:Biochemical Genetics Cargill Bioscience Division, Wayzata, MN, USA. FIELD URL: written in English.

    Google Scholar 

  34. Joel N. Hirschhorn and Mark J. Daly. Genome-wide association studies for common diseases and complex traits. Nature Reviews Genetics, 6(2):95–108, February 2005.

    Article  PubMed  CAS  Google Scholar 

  35. T. Ideker and R. Sharan. Protein networks in disease. Genome research, 18(4):644–652, 2008.

    Article  PubMed  CAS  Google Scholar 

  36. Trey Ideker, Owen Ozier, Benno Schwikowski, and Andrew F. Siegel. Discovering regulatory and signalling circuits in molecular interaction networks. In ISMB, pages 233–240, 2002.

    Google Scholar 

  37. Shaul Karni, Hermona Soreq, and Roded Sharan. A network-based method for predicting disease-causing genes. Journal of Computational Biology, 16(2):181–189, 2009.

    Article  PubMed  CAS  Google Scholar 

  38. B. P. Kelley, R. Sharan, R. M. Karp, T. Sittler, D. E. Root, B. R. Stockwell, and T. Ideker. Conserved pathways within bacteria and yeast as revealed by global protein network alignment. PNAS, 100(20):11394–11399, 2003.

    Article  PubMed  CAS  Google Scholar 

  39. Ryan Kelley and Trey Ideker. Systematic interpretation of genetic interactions using protein networks. Nature Biotechnology, 23(5):561–566, May 2005.

    Article  PubMed  CAS  Google Scholar 

  40. Yoo-Ah Kim, Stefan Wuchty, and Teresa M. Przytycka. Simultaneous identification of causal genes and dys-regulated pathways in complex diseases. In Proc. 14th Int’l Conf. Research in Computational Molecular Biology (RECOMB’10), volume LNCS 6044, pages 263–280, 2010.

    Google Scholar 

  41. Sebastian Köhler, Sebastian Bauer, Denise Horn, and Peter N. Robinson. Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet, 82(4):949–958, 2008.

    Article  PubMed  Google Scholar 

  42. M. Koyutürk, Y. Kim, U. Topkara, S. Subramaniam, W. Szpankowski, and A. Grama. Pairwise alignment of protein interaction networks. J Comput Biol, 13(2):182–199, 2006.

    Article  PubMed  Google Scholar 

  43. Kasper Lage, E. Karlberg, Zenia Storling, Pall Olason, Anders Pedersen, Olga Rigina, Anders Hinsby, Zeynep Tumer, Flemming Pociot, Niels Tommerup, Yves Moreau, and Soren Brunak. A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Bio., 25(3):309–316, 2007.

    Google Scholar 

  44. Jacques Lapointe, Chunde Li, John P. Higgins, Matt van de Rijn, Eric Bair, Kelli Montgomery, Michelle Ferrari, Lars Egevad, Walter Rayford, Ulf Bergerheim, Peter Ekman, Angelo M. DeMarzo, Robert Tibshirani, David Botstein, Patrick O. Brown, James D. Brooks, and Jonathan R. Pollack. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. PNAS, 101:811–816, Jan 2004.

    Article  PubMed  CAS  Google Scholar 

  45. J. Li, B. Lee, and A. S. Lee. Endoplasmic reticulum stress-induced apoptosis. The Journal of Biological Chemistry, 281(11):7260–7270, 2006.

    Article  PubMed  CAS  Google Scholar 

  46. Manway Liu, Arthur Liberzon, Sek W. Kong, Weil R. Lai, Peter J. Park, Isaac S. Kohane, and Simon Kasif. Network-based analysis of affected biological processes in type 2 diabetes models. PLoS Genetics, 3(6):e96+, June 2007.

    Google Scholar 

  47. L Lovász. Random walks on graphs: A survey. Combinatorics, Paul Erdos is Eighty, 2:353–398, 1996.

    Google Scholar 

  48. Kathy Macropol, Tolga Can, and Ambuj Singh. Rrw: repeated random walks on genome-scale protein networks for local cluster discovery. BMC Bioinformatics, 10(1):283, 2009.

    Google Scholar 

  49. Hiroshi Mamitsuka, Yasushi Okuno, and Atsuko Yamaguchi. Mining biologically active patterns in metabolic pathways using microarray expression profiles. SIGKDD Explor. Newsl., 5(2):113–121, 2003.

    Google Scholar 

  50. SD Markowitz and MM Bertagnolli. Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med, 361(25):2449–2460, Dec 2009.

    Article  PubMed  CAS  Google Scholar 

  51. F. A. Middleton, K. Mirnics, J. N. Pierri, D. A Lewis, and P. Levitt. Gene expression profiling revelas alterations of specific metabolic pathways in schizophrenia. The Journal of Neuroscience, 22(7):2718–2729, 2002.

    Google Scholar 

  52. T. M. Murali and Corban G. Rivera. Network legos: Building blocks of cellular wiring diagrams. In RECOMB, pages 47–61, 2007.

    Google Scholar 

  53. Elena Nabieva, Kam Jim, Amit Agarwal, Bernard Chazelle, and Mona Singh. Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinf., 21:i302–310, 2005.

    Google Scholar 

  54. R. Nibbe, M. Koyutürk, and M. Chance. Integrative proteomics approaches to identify important sub-networks in human colorectal cancer. PLoS Computational Biology, 6(1):e1000639, 2010.

    Google Scholar 

  55. R. K. Nibbe, R. Ewing, L. Myeroff, M. Markowitz, and M. Chance. Discovery and scoring of protein interaction sub-networks discriminative of late stage human colon cancer. Mol Cell Prot, 9(4):827–845, 2009.

    Article  Google Scholar 

  56. Alexandra C. Nica and Emmanouil T. Dermitzakis. Using gene expression to investigate the genetic basis of complex disorders. Human molecular genetics, 17(R2):ddn285–134, October 2008.

    Google Scholar 

  57. Martin Oti, Berend Snel, Martijn A Huynen, and Han G Brunner. Predicting disease genes using protein-protein interactions. J Med Genet, page jmg.2006.041376, 2006.

    Google Scholar 

  58. Jayesh Pandey, Mehmet Koyutürk, and Ananth Grama. Functional characterization and topological modularity of molecular interaction networks. BMC Bioinformatics, 11(Suppl. 1):S35, 2010.

    Google Scholar 

  59. Jayesh Pandey, Mehmet Koyutürk, Shankar Subramaniam, and Ananth Grama. Functional coherence in domain interaction networks. Bioinformatics, 24(16):i28–34, 2008.

    Article  PubMed  Google Scholar 

  60. Vishal N. Patel, Gurkan Bebek, John M. Mariadason, Donghai Wang, Leonard H. Augenlicht, and Mark R. Chance. Prediction and testing of biological networks underlying intestinal cancer. PLoS ONE, 5(9):e12497, 09 2010.

    Google Scholar 

  61. K. R. Patil and J. Nielsen. Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci U S A, 102(8):2685–2689, February 2005.

    Article  PubMed  CAS  Google Scholar 

  62. C. M. Perou, T. Srlie, M. B. Eisen, M. van de Rijn, S. S. Jeffrey, C. A. Rees, J. R. Pollack, D. T. Ross, H. Johnsen, L. A. Akslen, ystein Fluge, Alexander Pergamenschikov, Cheryl Williams, Shirley X. Zhu, Per E. Lnning, Anne-Lise Brresen-Dale, Patrick O. Brown, and David Botstein. Molecular portraits of human breast tumours. Nature, 406:747–752, Aug 2000.

    Google Scholar 

  63. Dilip Rajagopalan and Pankaj Agarwal. Inferring pathways from gene lists using a literature-derived network of biological relationships. Bioinformatics, 21(6):788–793, 2005.

    Article  PubMed  CAS  Google Scholar 

  64. D. R. Rhodes and A. M. Chinnaiyan. Integrative analysis of the cancer transcriptome. Nat Genet, 37 Suppl, June 2005.

    Google Scholar 

  65. Karen Sachs, Omar Perez, Dana Pe’er, Douglas A. Lauffenburger, and Garry P. Nolan. Causal protein-signaling networks derived from multiparameter single-cell data. Science, 308(5721):523–529, April 2005.

    Google Scholar 

  66. M. S. Scott, T. Perkins, S. Bunnell, F. Pepin, D. Y. Thomas, and M. Hallett. Identifying regulatory subnetworks for a set of genes. Molecular & Cellular Proteomics, pages 683–692, 2005.

    Google Scholar 

  67. Eran Segal, Haidong Wang, and Daphne Koller. Discovering molecular pathways from protein interaction and gene expression data. In ISMB (Supplement of Bioinformatics), pages 264–272, 2003.

    Google Scholar 

  68. Tomer Shlomi, Moran N N. Cabili, Markus J J. Herrgård, Bernhard Ø O. Palsson, and Eytan Ruppin. Network-based prediction of human tissue-specific metabolism. Nature biotechnology, August 2008.

    Google Scholar 

  69. D. K. Slonim. From patterns to pathways: gene expression data analysis comes of age. Nat Genet, 32 Suppl:502–508, December 2002.

    Google Scholar 

  70. Raoul Tibes, YiHua Qiu, Yiling Lu, Bryan Hennessy, Michael Andreeff, Gordon B. Mills, and Steven M. Kornblau. Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther., 5:2512–2521, 2006.

    Google Scholar 

  71. Hanghang Tong and Christos Faloutsos. Center-piece subgraphs: problem definition and fast solutions. In KDD ’06: Proceedings of the 12th ACM SIGKDD, pages 404–413, NY, USA, 2006. ACM.

    Google Scholar 

  72. Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. Random walk with restart: fast solutions and applications. Knowledge and Information Systems, 14(3):327–346, 2008.

    Article  Google Scholar 

  73. S. Tornow and H. W. Mewes. Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Research, 31(21):6283–6289, 2003.

    Article  PubMed  CAS  Google Scholar 

  74. Frances Turner, Daniel Clutterbuck, and Colin Semple. Pocus: mining genomic sequence annotation to predict disease genes. Genome Biology, 4(11):R75, 2003.

    Google Scholar 

  75. Igor Ulitsky, Richard M. Karp, and Ron Shamir. Detecting disease-specific dysregulated pathways via analysis of clinical expression profiles. In RECOMB, pages 347–359, 2008.

    Google Scholar 

  76. Fabio Vandin, Eli Upfal, and Benjamin J. Raphael. Algorithms for detecting significantly mutated pathways in cancer. In Proc. 14th Int’l Conf. Research in Computational Molecular Biology (RECOMB’10), volume LNCS 6044, pages 506–521, 2010.

    Google Scholar 

  77. Oron Vanunu, Oded Magger, Eytan Ruppin, Tomer Shlomi, and Roded Sharan. Associating genes and protein complexes with disease via network propagation. PLoS computational biology, 6(1):e1000641+, January 2010.

    Google Scholar 

  78. Jean-Philippe Vert and Minoru Kanehisa. Extracting active pathways from gene expression data. In ECCB, pages 238–244, 2003.

    Google Scholar 

  79. Ramana Vishnubhotla, Shan Sun, Jameela Huq, Marinka Bulic, and Anil Ramesh. Rock-ii mediates colon cancer invasion via regulation of mmp-2 and mmp-13 at the site of invadopodia as revealed by multiphoton imaging. Laboratory Investigation, 87:1149–1158, 2007.

    Article  PubMed  CAS  Google Scholar 

  80. Zhong Wang, Mark Gerstein, and Michael Snyder. Rna-seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 10(1):57–63, January 2009.

    Article  PubMed  CAS  Google Scholar 

  81. John Watkinson, Xiaodong Wang, Tian Zheng, and Dimitris Anastassiou. Identification of gene interactions associated with disease from gene expression data using synergy networks. BMC Systems Biology, 2(1), 2008.

    Google Scholar 

  82. E. Yohannes, J. Chang, G. J. Christ, K. P. Davies, and M. R. Chance. Proteomics analysis identifies molecular targets related to diabetes mellitus-associated bladder dysfunction. Mol Cell Proteomics, 7(7):1270–1285, 2008.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation CAREER Award CCF-0953195, and National Institutes of Health Grant UL1-RR024989 from the National Center for Research Resources (Clinical and Translational Science Awards).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Koyutürk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Koyutürk, M., Erten, S., Chowdhury, S.A., Nibbe, R.K., Chance, M.R. (2012). Molecular Networks and Complex Diseases. In: Koyutürk, M., Subramaniam, S., Grama, A. (eds) Functional Coherence of Molecular Networks in Bioinformatics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0320-3_7

Download citation

Publish with us

Policies and ethics