Modeling of Real-Time and Reconfigurable Systems

  • Weixun Wang
  • Prabhat Mishra
  • Sanjay Ranka
Chapter
Part of the Embedded Systems book series (EMSY, volume 4)

Abstract

Modeling plays an important role in developing real-time scheduling and dynamic reconfiguration techniques in embedded systems. As this book emphasizes on high level optimizations, we require simple, fast, and yet accurate estimation models for power, energy as well as temperature since the physical prototype is not available or prohibitively expensive in early design stages. For the same reason, efficient evaluation methods are also needed to reflect real designs. In this chapter, we first describe how to model a real-time multitasking system supporting dynamic reconfigurations. Next, we describe system-wide energy and thermal models. Finally, we look at how to evaluate the effects of various optimization techniques in general. These models will be used in all subsequent chapters.

References

  1. 11.
    N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and S. Reinhardt. The M5 simulator: Modeling networked systems. IEEE Micro, 26(4):52–60, 2006.CrossRefGoogle Scholar
  2. 16.
    D. Burger, T. M. Austin, and S. Bennett. Evaluating future microprocessors: The SimpleScalar tool set. Technical report, University of Wisconsin-Madison, 1996.Google Scholar
  3. 31.
    EEMBC. EEMBC, The Embedded Microprocessor Benchmark Consortium, 2000.Google Scholar
  4. 33.
    W. Fornaciari, D. Sciuto, and C. Silvano. Power estimation for architectural exploration of hw/sw communication on system-level buses. In Proceedings of International Workshop on Hardware/Software Codesign (CODES), pages 152–156, 1999.Google Scholar
  5. 40.
    M. Guthaus, J. Ringenberg, D.Ernest, T. Austin, T. Mudge, and R. Brown. Mibench: A free, commercially representative embedded benchmark suite. In Proceedings of International Workshop on Workload Characterization (WWC), pages 3–14, 2001.Google Scholar
  6. 46.
    HP. CACTI, HP Laboratories Palo Alto, CACTI 5.3. http://www.hpl.hp.com/, 2008.
  7. 52.
    R. Jayaseelan and T. Mitra. Temperature aware task sequencing and voltage scaling. In Proceedings of International Conference on Computer-Aided Design (ICCAD), pages 618–623, 2008.Google Scholar
  8. 69.
    A. KleinOsowski and D. Lilja. Minnespec: A new SPEC benchmark workload for simulation-based computer architecture research. IEEE Computer Architecture Letters, 1(1):7, 2002.Google Scholar
  9. 72.
    C. Lee, M. Potkonjak, and W. H. Mangione-smith. Mediabench: A tool for evaluating and synthesizing multimedia and communications systems. In Proceedings of International Symposium on Microarchitecture (Micro), pages 330–335, 1997.Google Scholar
  10. 79.
    S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined dynamic voltage scaling and adaptive body biasing for lower power microprocessors under dynamic workloads. In Proceedings of International Conference on Computer-Aided Design (ICCAD), pages 721–725, 2002.Google Scholar
  11. 114.
    K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and D. Tarjan. Temperature-aware microarchitecture: Modeling and implementation. ACM Transactions on Architecture and Code Optimization, 1(1):94–125, 2004.CrossRefGoogle Scholar
  12. 116.
    SPEC. SPEC CPU2000. http://www.spec.org/, 2000.
  13. 125.
    H. J. M. Veendrick. Short-circuit dissipation of static cmos circuitry and its impact on the design of buffer circuits. IEEE Journal of Solid-State Circuits, 19(4):468–473, 1984.CrossRefGoogle Scholar
  14. 158.
    S. Zhang and K. S. Chatha. Approximation algorithm for the temperature aware scheduling problem. In Proceedings of International Conference on Computer-Aided Design (ICCAD), pages 281–288, 2007.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Weixun Wang
    • 1
  • Prabhat Mishra
    • 1
  • Sanjay Ranka
    • 1
  1. 1.University of FloridaGainesvilleUSA

Personalised recommendations