Skip to main content

Modeling of Real-Time and Reconfigurable Systems

  • Chapter
  • First Online:
Dynamic Reconfiguration in Real-Time Systems

Part of the book series: Embedded Systems ((EMSY,volume 4))

  • 1083 Accesses

Abstract

Modeling plays an important role in developing real-time scheduling and dynamic reconfiguration techniques in embedded systems. As this book emphasizes on high level optimizations, we require simple, fast, and yet accurate estimation models for power, energy as well as temperature since the physical prototype is not available or prohibitively expensive in early design stages. For the same reason, efficient evaluation methods are also needed to reflect real designs. In this chapter, we first describe how to model a real-time multitasking system supporting dynamic reconfigurations. Next, we describe system-wide energy and thermal models. Finally, we look at how to evaluate the effects of various optimization techniques in general. These models will be used in all subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that not all the benchmarks from each suite are used in this book.

References

  1. N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and S. Reinhardt. The M5 simulator: Modeling networked systems. IEEE Micro, 26(4):52–60, 2006.

    Article  Google Scholar 

  2. D. Burger, T. M. Austin, and S. Bennett. Evaluating future microprocessors: The SimpleScalar tool set. Technical report, University of Wisconsin-Madison, 1996.

    Google Scholar 

  3. EEMBC. EEMBC, The Embedded Microprocessor Benchmark Consortium, 2000.

    Google Scholar 

  4. W. Fornaciari, D. Sciuto, and C. Silvano. Power estimation for architectural exploration of hw/sw communication on system-level buses. In Proceedings of International Workshop on Hardware/Software Codesign (CODES), pages 152–156, 1999.

    Google Scholar 

  5. M. Guthaus, J. Ringenberg, D.Ernest, T. Austin, T. Mudge, and R. Brown. Mibench: A free, commercially representative embedded benchmark suite. In Proceedings of International Workshop on Workload Characterization (WWC), pages 3–14, 2001.

    Google Scholar 

  6. HP. CACTI, HP Laboratories Palo Alto, CACTI 5.3. http://www.hpl.hp.com/, 2008.

  7. R. Jayaseelan and T. Mitra. Temperature aware task sequencing and voltage scaling. In Proceedings of International Conference on Computer-Aided Design (ICCAD), pages 618–623, 2008.

    Google Scholar 

  8. A. KleinOsowski and D. Lilja. Minnespec: A new SPEC benchmark workload for simulation-based computer architecture research. IEEE Computer Architecture Letters, 1(1):7, 2002.

    Google Scholar 

  9. C. Lee, M. Potkonjak, and W. H. Mangione-smith. Mediabench: A tool for evaluating and synthesizing multimedia and communications systems. In Proceedings of International Symposium on Microarchitecture (Micro), pages 330–335, 1997.

    Google Scholar 

  10. S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined dynamic voltage scaling and adaptive body biasing for lower power microprocessors under dynamic workloads. In Proceedings of International Conference on Computer-Aided Design (ICCAD), pages 721–725, 2002.

    Google Scholar 

  11. K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and D. Tarjan. Temperature-aware microarchitecture: Modeling and implementation. ACM Transactions on Architecture and Code Optimization, 1(1):94–125, 2004.

    Article  Google Scholar 

  12. SPEC. SPEC CPU2000. http://www.spec.org/, 2000.

  13. H. J. M. Veendrick. Short-circuit dissipation of static cmos circuitry and its impact on the design of buffer circuits. IEEE Journal of Solid-State Circuits, 19(4):468–473, 1984.

    Article  Google Scholar 

  14. S. Zhang and K. S. Chatha. Approximation algorithm for the temperature aware scheduling problem. In Proceedings of International Conference on Computer-Aided Design (ICCAD), pages 281–288, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, W., Mishra, P., Ranka, S. (2013). Modeling of Real-Time and Reconfigurable Systems. In: Dynamic Reconfiguration in Real-Time Systems. Embedded Systems, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0278-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0278-7_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0277-0

  • Online ISBN: 978-1-4614-0278-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics