Skip to main content

Can One Hear the Shape of a Fractal Drum? Partial Resolution of the Weyl-Berry Conjecture

  • Conference paper
Geometric Analysis and Computer Graphics

Part of the book series: Mathematical Sciences Research Institute Publications ((MSRI,volume 17))

Abstract

Several years ago, motivated in part by the challenging problem of studying the scattering of light from “fractal” surfaces, the physicist Michael V. Berry formulated a very intriguing conjecture about the vibrations of “drums with fractal boundary”. Extending to the “fractal” case a long standing conjecture of Hermann Weyl, he conjectured in particular that the high frequencies of such “fractal drums” were governed by the Hausdorff dimension of their boundary [1,2].

Research partially supported by the National Science Foundation under Grant DMS-8703138.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. V. Berry, Distribution of modes in fractal resonators, in “Structural Stability in Physics”, W. Güttinger and H. Eikemeir (eds.), Springer-Verlag, Berlin (1979), 51–53.

    Chapter  Google Scholar 

  2. M. V. Berry, Some geometric aspects of wave motion: wavefront dislocations, diffraction catastrophes, diffractals, in “Geometry of the Laplace Operator”, Proc. Symp. Pure Math., Vol. 36, Amer. Math. Soc, Providence, RI (1980), 13–38.

    Google Scholar 

  3. J. Brossard and R. Carmona, Can one hear the dimension of a fractal?, Comm. Math. Phys. 104 (1986), 103–122.

    Article  MATH  MathSciNet  Google Scholar 

  4. G. Cherbit (ed.), “Fractals, Dimensions Non Entières et Applications,” Masson, Paris, 1987.

    MATH  Google Scholar 

  5. R. Courant and D. Hubert, “Methods of Mathematical Physics,” Vol. I, Interscience, New York, NY, 1953.

    Google Scholar 

  6. H. Falconer, “The Geometry of Fractal Sets,” Cambridge Univ. Press, Cambridge, 1985.

    Book  MATH  Google Scholar 

  7. H. Federer, “Geometric Measure Theory,” Springer, Berlin, 1969.

    MATH  Google Scholar 

  8. J. Fleckinger and M. L. Lapidus, Remainder estimates for the asymptotics of elliptic eigenvalue problems with indefinite weights, Arch. Rational Mech. Anal. 98 (1987), 329–356.

    Article  MATH  MathSciNet  Google Scholar 

  9. L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193–218.

    Article  MATH  MathSciNet  Google Scholar 

  10. L. Hörmander, “The Analysis of Linear Partial Differential Operators,” Vols. III and IV, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  11. V. Ja. Ivrii, Second term of the spectral asymptotic expansion of the Laplace-Beltrami operator on manifolds with boundary, Functional Anal. Appl. 14 (1980), 98–106.

    Article  MathSciNet  Google Scholar 

  12. M. Kac, Can one hear the shape of a drum?, Amer. Math. Monthly 73 (1986), 1–23.

    Article  Google Scholar 

  13. M. L. Lapidus, Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture, Univ. of Georgia preprint, Athens (1988), 123 pages; to appear in the “Transactions of the American Mathematical Society”.

    Google Scholar 

  14. M. L. Lapidus, Elliptic differential operators on fractals and the Weyl-Berry conjecture, in preparation.

    Google Scholar 

  15. M. L. Lapidus and J. Fleckinger-Pellé, Tambour fractal: vers une resolution de la conjecture de Weyl-Berry pour les valeurs propres du laplacien, C. R. Acad. Sci Paris Sér. I Math. 306 (1988), 171–175.

    MATH  Google Scholar 

  16. M. L. Lapidus and C. Pomerance, The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums, in preparation. [To be announced in “M. L. Lapidus and C. Pomerance, Fonction zêta de Riemann et conjecture de Weyl-Berry pour les tambours fractals, C. R. Acad. Sci Paris Sér. I Math.” (to appear)].

    Google Scholar 

  17. H. P. McKean and I. M. Singer, Curvature and the eigenvalues of the Laplacian, J. Differential Geom. 1 (1967), 43–69.

    MATH  MathSciNet  Google Scholar 

  18. B. B. Mandelbrot, “The Fractal Geometry of Nature,” rev. and enl. ed., W. H. Freeman, New York, NY, 1983.

    Google Scholar 

  19. R. B. Melrose, WeyVs conjecture for manifolds with concave boundary, in “Geometry of the Laplace Operator”, Proc. Symp. Pure Math., Vol. 36, Amer. Math. Soc, Providence, RI (1980), 254–274.

    Google Scholar 

  20. G. Métivier, Valeurs propres de problèmes aux limites elliptiques irréguliers, Bull. Soc. Math. France Mém. 51–52 (1977), 125–219.

    Google Scholar 

  21. H. O. Peitgen and P. H. Richter, “The Beauty of Fractals,” Springer-Verlag, Berlin, 1986.

    Book  MATH  Google Scholar 

  22. Pham The Lai, Meilleures estimations asymptotiques des restes de la fonction spectrale et des valeurs propres relatifs au laplacien, Math. Scand. 48 (1981), 5–38.

    MATH  MathSciNet  Google Scholar 

  23. M. Reed and B. Simon, “Methods of Modem Mathematical Physics,” Vol. IV, Academic Press, New York, NY, 1978.

    Google Scholar 

  24. R. T. Seéley, A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of R 3, Adv. in Math. 29 (1978), 244–269.

    Article  MATH  MathSciNet  Google Scholar 

  25. H. Weyl, Das aysmptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, Math. Ann. 71 (1912), 441–479.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this paper

Cite this paper

Lapidus, M.L. (1991). Can One Hear the Shape of a Fractal Drum? Partial Resolution of the Weyl-Berry Conjecture. In: Concus, P., Finn, R., Hoffman, D.A. (eds) Geometric Analysis and Computer Graphics. Mathematical Sciences Research Institute Publications, vol 17. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9711-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9711-3_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9713-7

  • Online ISBN: 978-1-4613-9711-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics