Skip to main content
Log in

Remainder estimates for the asymptotics of elliptic eigenvalue problems with indefinite weights

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Let A be a positive self-adjoint elliptic operator of order 2m on a bounded open set Ω ⊂ℝk. We consider the variational eigenvalue problem

$$\mathcal{A}u = \lambda r{\text{(}}x{\text{)}}u,{\text{ }}x \in \Omega ,$$
((P))

, with Dirichlet or Neumann boundary conditions; here the “weight” r is a real-valued function on Ω which is allowed to change sign in Ω or to be discontinuous. Such problems occur naturally in the study of many nonlinear elliptic equations. In an earlier work [Trans. Amer. Math. Soc. 295 (1986), pp. 305–324], we have determined the leading term for the asymptotics of the eigenvalues λ of (P). In the present paper, we obtain, under more stringent assumptions, the corresponding remainder estimates. More precisely, let N ±(λ) be the number of positive (respectively, negative) eigenvalues of (P) less than λ>0 (respectively, greater than λ<0); set r ± = max (±r, 0) and \(\Omega _ \pm = {\text{\{ }}x \in \Omega :r{\text{(}}x{\text{)}} \gtrless {\text{0\} }}\). We show that

$$N^ \pm {\text{(}}\lambda {\text{) = }}\mathop \smallint \limits_{\Omega _ \pm } {\text{(}}\lambda r{\text{(}}x{\text{))}}^{\frac{k}{{{\text{2}}m}}} {\text{ }}\mu \prime _\mathcal{A} {\text{(}}x{\text{) }}dx + 0{\text{(}}\left| \lambda \right|^{\frac{{k - 1}}{{{\text{2}}m}} + \delta } {\text{) as }}\lambda \to \pm \infty {\text{,}}$$

, where δ>0 and μ A (x) is the Browder-Gårding density associated with the principal part of A. How small δ can be chosen depends on the “regularity” of the leading coefficients of A, r ±, and of the boundary of Ω ±. These results seem to be new even for positive weights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R. A., “Sobolev Spaces,” Academic Press, New York, N.Y., 1975.

    Google Scholar 

  2. Agmon, S., “Lectures on Elliptic Boundary Value Problems,” Van Nostrand, Princeton, N.J., 1965.

    Google Scholar 

  3. Agmon, S., & Y. Kannai, On the asymptotic behavior of spectral functions and resolvent kernels of elliptic operators, Israel J. Math. 5 (1967), 1–30.

    Google Scholar 

  4. Birman, M. S., & M. Z. Solomjak, Spectral asymptotics of nonsmooth elliptic operators II, Trans. Moscow Math. Soc. 28 (1973), 1–32.

    Google Scholar 

  5. Birman, M. S., & M. Z. Solomjak, “Quantitative Analysis in Sobolev Imbeddings Theorems and Applications to Spectral Theory,” Amer. Math. Soc. Transl., Ser. 2, Vol. 114, Amer. Math. Soc., Providence, N.Y., 1980.

    Google Scholar 

  6. Courant, R., & D. Hilbert, “Methods of Mathematical Physics,” Vol. I, English Transl., Interscience, New York, N.Y., 1953.

    Google Scholar 

  7. de Figueiredo, D. G., Positive solutions of semilinear elliptic problems, Lecture Notes in Math., Vol. 957, Springer-Verlag, Berlin, 1982, pp. 34–87.

    Google Scholar 

  8. Gossez, J.-P., & E. Lami Dozo, On the principal eigenvalue of a second order linear elliptic problem, Arch. Rational Mech. Anal. 89 (1985), 169–175.

    Google Scholar 

  9. Edmunds, D. E., & W. D. Evans, On the distribution of eigenvalues of Schröinger operators, Arch. Rational Mech. Anal. 89 (1985), 135–167.

    Google Scholar 

  10. El Fetnassi, M., Comportement asymptotique des problèmes “indéfinis à droite,” Thèse de Doctorat de 3eme cycle, Université Paul Sabatier, Toulouse, France, June 1985.

    Google Scholar 

  11. Fleckinger, J., & M. El Fetnassi, Comportement asymptotique des valeurs propres de problèmes elliptiques “non définis à droite,” C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 599–602.

    Google Scholar 

  12. Fleckinger, J., & M. L. Lapidus, Eigenvalues of elliptic boundary value problems with an indefinite weight function, Trans. Amer. Math. Soc. 295 (1) (1986), 305–324.

    Google Scholar 

  13. Hess, P., On the asymptotic distribution of eigenvalues of some nonselfadjoint problems, Bull, London Math. Soc. 18 (1986), 181–184.

    Google Scholar 

  14. Hess, P., & T. Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. Partial Differential Equations 5 (1980) 999–1030.

    Google Scholar 

  15. Hörmander, L., The spectral function of an elliptic operator, Acta Math. 121 (1968), 193–218.

    Google Scholar 

  16. Hörmander, L., “The Analysis of Linear Partial Differential Operators,” Vols. III & IV, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  17. Ivrii, V., On the second term in the spectral asymptotics for the Laplace-Beltrami operator on a manifold with boundary, Functional Anal. Appl. 14 (1980), 98–106.

    Google Scholar 

  18. Ivrii, V., “Precise Spectral Asymptotics for Elliptic Operators Acting in Fiberngs over Manifolds with Boundary,” Lecture Notes in Math., Vol. 1100, Springer-Verlag, Berlin 1984.

    Google Scholar 

  19. Lapidus, M. L., Valeurs propres du laplacien avec un poids qui change de signe, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), 265–268.

    Google Scholar 

  20. Lapidus, M. L., Spectral theory of elliptic problems with indefinite weights, pp. 159–168 in “Spectral Theory of Sturm-Liouville Differential Operators,” (Hans G. Kaper & T. Zettl, Eds.), ANL-84-73, Argonne National Laboratory, Argonne, Illinois, 1984.

    Google Scholar 

  21. Loomis, L. H., & S. Sternberg, “Advanced Calculus,” Addison-Wesley, Reading, Mass., 1968.

    Google Scholar 

  22. Melrose, R., The trace of the wave group, Contemp. Math. Vol. 27, Amer. Math. Soc., Providence, R.I., 1984, pp. 127–167.

  23. Metivier, G., Valeurs propres de problèmes aux limites elliptiques irréguliers, Bull. Soc. Math. France, Mém. 51–52 (1977), 125–219.

    Google Scholar 

  24. Pham The Lai, Meilleures estimations asymptotiques des restes de la fonction spectrale et des valeurs propres relatifs au laplacien, Math. Scand. 48 (1981), 5–31.

    Google Scholar 

  25. Reed, M., & B. Simon, “Methods of Modem Mathematical Physics,” Vol. IV, “Analysis of Operators,” Academic Press, New York, N.Y., 1978.

    Google Scholar 

  26. Rozenbljum, G. V., The distribution of the discrete spectrum for singular differential operators, Soviet Math. Dokl. 13 (1972), 245–249.

    Google Scholar 

  27. Seeley, R. T., A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of R 3, Adv. in Math. 29 (1978), 244–269.

    Google Scholar 

  28. Seeley, R. T., An estimate near the boundary for the spectral function of the Laplace operator, Amer. J. Math. 102 (1980), 869–902.

    Google Scholar 

  29. Weinberger, H. F., “Variational Methods for Eigenvalue Approximation,” CBMS Regional Conf. Ser. Appl. Math., Vol. 15, SIAM, Philadelphia, Penn., 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. B. McLeod

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleckinger, J., Lapidus, M.L. Remainder estimates for the asymptotics of elliptic eigenvalue problems with indefinite weights. Arch. Rational Mech. Anal. 98, 329–356 (1987). https://doi.org/10.1007/BF00276913

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276913

Keywords

Navigation