Advertisement

Fate and Effects of the Surfactant Sodium Dodecyl Sulfate

  • Michael M. Singer
  • Ronald S. Tjeerdema
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 133)

Abstract

Surface-active agents, or surfactants, are detersive chemicals characterized by having two different moieties, one polar and the other nonpolar, at opposite ends of a single molecule. The polar moiety is referred to as hydrophilic or lipophobic, and the nonpolar as hydrophobic or lipophilic. The nonpolar end is generally a long-chain hydrocarbon, which can be linear, branched, or aromatic. Surfactants are broadly categorized as an-ionic, cationic, nonionic, or amphoteric (zwitterionic) according to the nature of the hydrophile yielded in aqueous solution. In currently marketed household, personal, and industrial cleaners, anionic surfactants are the most common class.

Keywords

Sodium Dodecyl Sulfate Sodium Dodecyl Sulfate Anionic Surfactant Sodium Lauryl Sulfate Alkyl Sulfate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe S (1984) Biodégradation of sodium alkylbenzenesulfonates by soil perfusion method. Nippon Kagaku Kaishi (9): 1465–1470.CrossRefGoogle Scholar
  2. Abel PD, Skidmore JF (1975) Toxic effects of an anionic detergent on the gills of rainbow trout. Water Res 9: 759–765.CrossRefGoogle Scholar
  3. Abel PD (1976) Toxic action of several lethal concentrations of an anionic detergent on the gills of the brown trout (Salmo trutta L.). J Fish Biol 9: 441–446.CrossRefGoogle Scholar
  4. Agner T, Serup J (1989) Seasonal variation of skin resistance to irritants. Brit J Derm 121: 323–328.PubMedCrossRefGoogle Scholar
  5. Ahlfors EE, Larsson A (1988) Chemically induced inflammation in rat oral mucosa. Scand J Dental Res 96 (5): 428–434.Google Scholar
  6. Ainsworth SJ (1992) Soaps and detergents. Chem Eng News 70 (3): 27–63.CrossRefGoogle Scholar
  7. Akamatsu Y (1974) Osmotic stabilization of unsaturated fatty acid auxotrophs of Escherichia coli. J Biochem 76: 553–561.PubMedGoogle Scholar
  8. Anderson DJ, Day MJ, Russell NJ, White GF (1988) Temporal and geographical distributions of epilithic sodium dodecyl sulfate degrading bacteria in a polluted South Wales river. Appl Environ Microbiol 54 (2): 555–560.PubMedGoogle Scholar
  9. Anderson DJ, Day MJ, Russell NJ, White GF (1990) Die-away kinetic analysis of the capacity of epilithic and planktonic bacteria from clean and polluted river water to biodegrade sodium dodecyl sulfate. Appl Environ Microbiol 56 (3): 758–763.PubMedGoogle Scholar
  10. Anghel DF, Ciocan N, Popescu G (1976) Potentiometrie titration of ionic surfac-tants. Tr-Mezhdunar Kongr Poverkhn-Akt Veshchestvam 7 (1): 524–536.Google Scholar
  11. Antoine JL, Contreras JL, Van Neste DJ (1989) pH influence of surfactant-induced skin irritation. Dermatosen 37(3):96–100.Google Scholar
  12. Antonielli M, Lupatteli M (1977) A barley test for measuring the biological action of detergents and detersives. Agrochimica 21: 15–22.Google Scholar
  13. APHA (1985) Standard methods for the examination of water and wastewater, 16th ed. American Public Health Association, Washington, DC.Google Scholar
  14. Arima T, Takahashi K, Kawana T, Wakabayashi M, Kikuchi M (1981) Toxicity of detergents to aquatic organisms. II. Acute toxicity of anionic surfactants to eggs, larvae, and fries of carp (Cyprinus carpió). Suisan Zoshoku 29 (1): 30–37.Google Scholar
  15. Arthur D. Little, Inc. (1991a) Environmental and human safety of major surfac-tants. Vol I, anionic surfactants. Part 3, alkyl sulfates. Final rept, Soap and Detergent Agency, New York.Google Scholar
  16. Arthur D. Little, Inc. (1991b) Environmental and human safety of major surfac-tants. Vol I, anionic surfactants. Part 1, linear alkylbenzene sulfonates. Final rept, Soap and Detergent Agency, New York.Google Scholar
  17. Attwood D, Florence AT (1983) Surfactant systems: Their chemistry, pharmacy, and biology. Chapman and Hall, London.Google Scholar
  18. Aungst BJ, Rogers NJ, Shefter E (1986) Enhancement of naloxone penetration through human skin in vitro using fatty acids, fatty alcohols, surfactants, sulfoxides, and amides. Int J Pharmacol 33 (l-3): 225–234.CrossRefGoogle Scholar
  19. Babulak SW, Rhein LD, Scala DD, Simion FA, Grove GL (1986) Quantitation of erythema in a soap chamber test using the Minolta chroma (reflectance) meter: Comparison of instrumental results with visual assessments. J Soc Cosmet Chem 37: 475–479.Google Scholar
  20. Balls M, Reader S, Atkinson K, Tarrant J, Clothier R (1991) Non-animal alternative toxicity tests for detergents: Genuine replacements or mere prescreens? J Chem Tech Biotechnol 50: 423–433.Google Scholar
  21. Bartnik FG (1992) Interaction of anionic surfactants with proteins, enzymes, and membranes. In: Gloxhuber Ch, Künstler K (eds) Anionic surfactants: Biochemistry, toxicology, dermatology, 2nd ed. Marcel Dekker, New York, pp 1–42.Google Scholar
  22. Benoit J, Cormier M, Wepierre J (1987) Effect of proteins on the assessment of surfactant cytotoxicity by an in vitro test: Possible correlation with in vivo data. Toxicol In Vitro l(2): 91–96.Google Scholar
  23. Berardesca E, Maibach HI (1988a) Racial differences in sodium lauryl sulfate- induced cutaneous irritation: Black and white. Contact Derm 18: 65–70.Google Scholar
  24. Berardesca E, Maibach HI (1988b) Sodium lauryl sulfate-induced cutaneous irritation: Comparison of white and Hispanic subjects. Contact Derm 19 (2): 136–140.PubMedCrossRefGoogle Scholar
  25. Berardesca E, Fideli D, Gabba P, Cespa M, Rabbiosi G, Maibach HI (1990) Ranking of surfactant skin irritancy in vivo in man using the plastic occlusion stress test (POST). Contact Derm 23 (1): 1–5.PubMedCrossRefGoogle Scholar
  26. Berenson MM, Temple AR (1975) Detergent toxicity: Effects on esophageal and gastric mucosa. Clin Toxicol 8 (4): 399–404.PubMedCrossRefGoogle Scholar
  27. Bernheim F (1975) A comparison of the effects of sodium dodecyl sulphate and sodium dodecanoic on cell swelling and potassium efflux in a strain of Pseudomonas aeruginosa. Cytobios 14: 203–210.Google Scholar
  28. Beyer KH, Bergfeld WF, Berndt WO, Boutwell RK, Carlton WW, Hoffman DK, Schroeter AL (1983) Final report on the safety assessment of sodium lauryl sulfate and ammonium lauryl sulfate. J Am Coll Toxicol 2 (7): 127–181.Google Scholar
  29. Biermann M, Lange F, Piorr R, Ploog U, Rutzen H, Schindler J, Schmid R (1987) Synthesis of surfactants. In: Falbe J (ed) Surfactants in consumer products: Theory, technology, and application. Springer-Ver lag, Berlin, pp 23–134.CrossRefGoogle Scholar
  30. Birdi KS (1976) Comparative purity of commercially available sodium dodecyl sulfates: A simple criterion. Anal Biochem 74: 620–622.PubMedCrossRefGoogle Scholar
  31. Bishop WE, Perry RL (1979) Development and evaluation of a flow-through growth inhibition test with duckweed (Lemna minor). In: Branson DR, Dickson KL (eds) Aquatic toxicology and hazard assessment: 4th conference. STP 737, ASTM, Philadelphia, PA, pp 421–435.Google Scholar
  32. Black JG, Howes D (1979) Skin penetration of chemically related detergents. J Soc Cosmet Chem 30: 157–163.Google Scholar
  33. Black JG, Howes D (1992) Absorption, metabolism, and excretion of anionic surfactants. In: Gloxhuber Ch, Künstler K (eds) Anionic surfactants: Biochemistry, toxicology, dermatology, 2nd ed. Marcel Dekker, New York, pp 43–80.Google Scholar
  34. Bogan RH, Sawyer CN (1954) Biochemical degradation of synthetic detergents. 1. Preliminary studies. Sewage Ind Wastes 26: 1069–1080.Google Scholar
  35. Booz ML, Travis RL (1981) Two-dimensional electrophoresis of soybean root plasma membrane proteins solubilized by SDS and other detergents. Phytochem- istry 20 (8): 1773–1779.CrossRefGoogle Scholar
  36. Bringmann G, Kühn R (1980) Comparison of the toxicity thresholds of water pollutants to bacteria, algae, and protozoa in the cell multiplication inhibition test. Water Res 14: 231–241.CrossRefGoogle Scholar
  37. Briseid G, Briseid K, Kirkevold K (1976) Increased intestinal absorption in the rat caused by sodium lauryl sulfate, and its possible relation to the cAMP system. Arch Pharmacol 292 (2): 137–144.CrossRefGoogle Scholar
  38. Briseid G, Oeye I, Briseid K (1977) Increased level of cAMP in the rat intestinal mucosa caused by sodium lauryl sulfate. Arch Pharmacol 298 (3): 263–266.CrossRefGoogle Scholar
  39. Bromage NR, Fuchs A (1976) A histological study of the response of the interrenal cells of the goldfish ( Carassius auratus) to treatment with sodium lauryl sulfate. J Fish Biol 9: 529–535.Google Scholar
  40. Brustovetskii NN, Dedukhova VI, Egorova MV, Mokhova EN, Skulachev VP (1991) Uncoupling of oxidative phosphorylation by fatty acids and detergents suppressed by ATP/ADP-antiporter inhibitors. Biokhimiya 56 (6): 1042–1048.Google Scholar
  41. Burke B, Olavesen AH, Curtis CG, Powell GM (1975) The biodégradation of some anionic detergents in the rat, a common metabolic pathway. Xenobiotica 5 (9): 573–584.PubMedCrossRefGoogle Scholar
  42. Cardwell RD, Woelke CE, Carr MI, Sanborn E (1977) Appraisal of a reference toxicant for estimating the quality of oyster larvae. Bull Environ Contam Toxicol 20: 128–134.CrossRefGoogle Scholar
  43. Cardwell RD, Woelke CE, Carr MI, Sanborn E (1978) Variation in toxicity tests of bivalve mollusc larvae as a function of termination technique. Bull Environ Contam Toxicol 18 (6): 719–725.CrossRefGoogle Scholar
  44. Carson S, Oser BL (1964) Dermal toxicity of sodium lauryl sulfate. J Soc Cosmet Chem 15: 137–147.Google Scholar
  45. Cascorbi HF, Rudo FG, Lu GG (1963) Acute toxicity of intravenous sodium lauryl sulfate. J Pharmacol Sei 52: 803–805.CrossRefGoogle Scholar
  46. Castritsi-Catharios J, Karka A, Moraiti M (1980) Toxicity of detergents and a surfactant on Artemia salina Leach. Rev Trav Inst Peches Marit 44 (4): 355–364.Google Scholar
  47. Choules GL, Russell WC, Gauthier DA (1978) Duck mortality from detergent- polluted water. J Wildl Mgt 42 (2): 410–414.CrossRefGoogle Scholar
  48. Chowhan ZT, Pritchard R (1978) Effect of surfactants on percutaneous absorption of naproxen. I. Comparison of rabbit, rat, and human excised skin. J Pharmacol Sei 67 (9): 1272–1274.CrossRefGoogle Scholar
  49. Ciocan N, Anghel D (1976) Liquid membrane electrodes for Potentiometrie determination of anionic detergents on their own and in mixtures. Tenside Deterg 13 (4): 188–192.Google Scholar
  50. Ciuchta HP, Dodd KT (1978) The determination of the irritancy potential of surfactants using various methods of assessment. Drug Chem Toxicol l(3): 305–324.Google Scholar
  51. Conway RA, Waggy GT, Spiegel MH, Berglund RL (1983) Environmental fate and effects of ethylene oxide. Environ Sei Technol 17: 107–112.CrossRefGoogle Scholar
  52. Cook TM, Goldman CK (1974) Degradation of anionic detergents in Chesapeake Bay. Chesapeake Sei 15 (l): 52–55.CrossRefGoogle Scholar
  53. Cowgill UM, Milazzo DP, Landenberger BD (1990) The reproducibility of the three brood Ceriodaphnia test using the reference toxicant sodium lauryl sulfate. Arch Environ Contam Toxicol 19: 513–517.PubMedCrossRefGoogle Scholar
  54. Cowgill UM, Milazzo DP (1991) The response of the three brood Ceriodaphnia test to fifteen formulations and pure compounds in common use. Arch Environ Contam Toxicol 21: 35–40.PubMedCrossRefGoogle Scholar
  55. Cua AB, Wilhelm K-P, Maibach HI (1990) Cutaneous sodium lauryl sulfate irritation potential: Age and regional variability. Brit J Derm 123 (5): 607–613.PubMedCrossRefGoogle Scholar
  56. Dahl MV, Trancik RJ (1977) Sodium lauryl sulphate irritant patch tests: Degree of inflammation at various times. Contact Derm 3: 263–266.Google Scholar
  57. Dalela RC, Tyagi AK, Pal N, Verma SR (1981) Subacute stress induced by sodium lauryl sulphate (SLS) on certain hematological parameters in Saccobranchus fossilis. Water, Air, Soil Pollut 15 (l): 3–9.CrossRefGoogle Scholar
  58. Davison J, Brunei F, Phanopoulos A, Prozzi D, Terpstra P (1992) Cloning and sequencing of Pseudomonas genes determining sodium dodecyl sulfate biodégradation. Gene 144: 19–24.CrossRefGoogle Scholar
  59. Denner WHB, Olavesen AH, Powell GM, Dodgeson KS (1969) The metabolism of potassium dodecyl [35S]sulphate in the rat. Biochem J 111: 43–51.PubMedGoogle Scholar
  60. Dodgeson KS, White GF (1983) Some microbial enzymes involved in the biodégradation of sulphated surfactants. In: Wiseman A (ed) Topics in enzyme and fermentation biotechnology. Ellis Howard, Chichester, England, pp 90–155.Google Scholar
  61. Draize JH, Woodward G, Calvery H (1944) Methods for the study of irritation and toxicity of substances applied topically to the skin and mucus membranes. J Pharmacol Exp Ther 82: 377–390.Google Scholar
  62. Draize JH (1959) Appraisal of the safety of chemicals in foods, drugs, and cosmetics. Dermal toxicity. Association of Food and Drug Officials of the US Business Office, Bureau of Food and Drugs, Austin, TX, pp 46–48.Google Scholar
  63. Dreger EE, Keim GI, Miles GD, Shedlovsky L, Ross J (1944) Sodium alkyl sulfates, properties involving surface activity. Ind Eng Chem 36: 610–617.CrossRefGoogle Scholar
  64. Dronkers H, van der Vet AP (1967) Investigations into the mechanism of microbiological breakdown of dodecyl sulfate. In: Proceedings of 4th international congress on surface active substances. Vol 3, chemistry, physics, and application of surface active substances. Gordon and Breach, London, pp 841–848.Google Scholar
  65. Dryl S, Mehr K (1976) Physiological and toxic effects of detergents on Paramecium caudatum. Acta Protozool 15 (4): 501–513.Google Scholar
  66. Dumitru IF, Iordechescu D, Ceausecu I (1975) The effects of sodium dodecyl sulfate, in v/vo, on the kinetics of phosphorylase in the white muscle of Carassius carassius. Rev RoumBiochim 12 (l): 21–28.Google Scholar
  67. Dutta M, Sen O, Bhattacharya S (1985) Effect of the detergent sodium lauryl sulfate on the somatic nuclei of Vigna radiata. Environ Ecol 3 (4): 551–553.Google Scholar
  68. Eisner P, Wilhelm D, Maibach HI (1991) Effect of low-concentration sodium lauryl sulfate on human vulvar and forearm skin. J Repro Med 36 (1): 77–81.Google Scholar
  69. Environment Canada (1973) Guidelines on the use and acceptability of oil spill dispersants. Rept EPS l-EE-73-1, Environmental Protection Service, Environ-mental Emergency Branch, Ottawa, Canada.Google Scholar
  70. Environment Canada (1984) Guidelines on the use and acceptability of oil spill dispersants, 2nd ed. Rept EPS l-EP-84-1, Environmental Protection Service, Environmental Emergency Branch, Ottawa, Canada.Google Scholar
  71. Epstein S, Throndson WD, Tainter ML (1939) Possible deleterious effects of using soap substitutes in dentifrices. J Am Dental Assoc 26: 1461–1471.Google Scholar
  72. Ernst R, Arditti J (1980) Biological effects of surfactants. IV. Effects of non-ionics and amphoterics on HeLa cells. Toxicology 15: 233–242.Google Scholar
  73. Falbe J (1987) Surfactants in consumer products: Theory, technology, and application. Springer-Ver lag, Berlin.CrossRefGoogle Scholar
  74. Fischer WK, Gericke P (1975) Biodegradability determination via unspecific analysis (chemical oxygen demand, dissolved organic carbon) in coupled units of the OECD confirmatory test. II. Results. Water Res 9: 1137–1141.Google Scholar
  75. Fitzgerald JW, Payne WJ (1972) Repression in a Pseudomonas species of sulpha- tases active on short chain alkylsulphates. Microbios 6: 55–67.PubMedGoogle Scholar
  76. Fitzhugh OG, Nelson AA (1948) Chronic oral toxicities of surface-active agents. J Am Pharmacol Assoc 37: 29–32.CrossRefGoogle Scholar
  77. Fogels A, Sprague JB (1977) Comparative short-term tolerance of zebrafish, flag- fish, and rainbow trout to five poisons including potential reference toxicants. Water Res 11: 811–817.CrossRefGoogle Scholar
  78. Fogelson SJ, Shoch DE (1944) Treatment of gastroduodenal ulcerative disease with sodium alkyl sulfate. Arch Intern Med 73: 212–216.CrossRefGoogle Scholar
  79. Freeman S, Maibach HI (1988) Study of irritant contact dermatitis produced by repeat patch test with sodium lauryl sulfate and assessed by visual methods, transepidermal water loss, and laser Doppler velocimetry. J Am Acad Derm 19 (3): 496–502.PubMedCrossRefGoogle Scholar
  80. Fukuzawa K, Tokumure A, Yamada S, Tsukatani H (1978) Oral toxicity of sodium dodecyl sulfate. Eisei Kagaku 24 (2): 107–110.CrossRefGoogle Scholar
  81. Gagnon MJ (1979) Note on a rapid and sensitive method for the determination of anionic detergents in natural waters at the ppb level. Water Res 13: 53–56.CrossRefGoogle Scholar
  82. Gale LE, Scott PM (1953) A pharmacological study of a homologous series of sodium alkyl sulfates. J Am Pharmacol Assoc 42 (5): 283–287.CrossRefGoogle Scholar
  83. García Domínguez J, Balaguer F, Parra JL, Pelejero CM (1981) The inhibitory effects of some amphoteric surfactants on skin irritation by alkyl sulfates. Int J Cosmet Sci 3: 57–68.PubMedCrossRefGoogle Scholar
  84. Gericke P, Fischer WK (1979) Correlation of biodegradability determinations with various chemicals and various tests. Ecotox Environ Saf 3: 159–173.CrossRefGoogle Scholar
  85. Gilbert PA, Pettigrew R (1984) Surfactants and the environment. Int J Cosmet Sci 6: 149–158.PubMedCrossRefGoogle Scholar
  86. Gisslen H, Magnusson B (1966) Effects of detergents on guinea pig skin. Acta Derm-Vereneol 46: 269–274.Google Scholar
  87. Gloxhuber Ch (1972) Toxicology of basic materials in washing and cleaning agents. Fette, Seifen, Anstrichm 74: 49–57.CrossRefGoogle Scholar
  88. Gloxhuber Ch (1974) Toxicological properties of surfactants. Arch Toxicol 32: 245–270.PubMedCrossRefGoogle Scholar
  89. Goldacre RJ (1968) Effect of detergents and oils on the cell membrane. In: Carthy JD, Arthur DR (eds) Biological effects of oil pollution on littoral communities. Proc symp at Orielton Field Center. Field Studies Council (Great Britain), London, pp 131–137.Google Scholar
  90. Goodnow RA, Harrison AP (1972) Bacterial degradation of detergent compounds. Appl Microbiol 24 (4): 555–560.PubMedGoogle Scholar
  91. Goryunova SV, Ostroumov SA (1986) The anionic detergent effect on green proto- coccous algae and seedlings of some angiosperms. Biol Nauki (7): 84–86.Google Scholar
  92. Gottschaldt N (1982) Preparation and evaluation of water-toxicological study results illustrated by surfactants. Acta Hydrochim Hydrobiol 10 (6): 583–596.CrossRefGoogle Scholar
  93. Green K, Johnson RE, Chapman JM, Nelson E, Cheeks L (1989) Preservative effects on the healing rate of rabbit corneal epithelium. Lens Eye Tox Res 6 (1- 2): 37–41.Google Scholar
  94. Haney PD (1954) Characteristics and effects of synthetic detergents: Task group report. J Am Water Works Assoc 46: 751–774.Google Scholar
  95. Hara TJ, Thompson BE (1978) The reaction of whitefish, Coregonus clupeaformis, to the anionic detergent sodium lauryl sulfate and its effects on their olfactory responses. Water Res 12: 893–897.Google Scholar
  96. Hatton EH, Fosdick LS, Calandra J (1940) Toxicity and rubifacient action of sulfonated higher alcohols. J Dental Res 19: 87–92.CrossRefGoogle Scholar
  97. Hemmer MJ, Middaugh DP, Comparetta V (1992) Comparative acute sensitivity of larval topsmelt, Atherinops affinis, and inland silverside, Menidia beryllina, to 11 chemicals. Environ Toxicol Chem 11: 401–408.Google Scholar
  98. Hems worth BN (1981) Male mouse fertility after ingestion of spermicidal deter-gents. Environ Biol Med 9: 243–244.Google Scholar
  99. Hidu H (1965) Effects of synthetic surfactants on the larvae of clams (A/, mercen- aria) and oysters (C. virginica). J Water Pollut Contr Fed 37 (2): 262–270.Google Scholar
  100. Higgins ES, Rogers KS (1976) Reversible inhibition of mitochondrial respiratory control by tetrabutylammonium bromide. Chem-Biol Interact 12 (l): 65–69.PubMedCrossRefGoogle Scholar
  101. Hirai S, Yashiki T, Mima H (1981) Mechanisms for the enhancement of nasal absorption of insulin by surfactants. Int J Pharmacol 9 (2): 173–184.CrossRefGoogle Scholar
  102. Hope J (1977) Absence of chromosome damage in the bone marrow of rats fed detergent actives for 90 days. Mutat Res 56: 47–50.PubMedCrossRefGoogle Scholar
  103. Howes D (1975) The percutaneous absorption of some anionic surfactants. J Soc Cosmet Chem 26: 47–63.Google Scholar
  104. Hsu Y-C (1963) Detergent (sodium lauryl sulphate)-splitting enzyme in bacteria. Nature 200 (4911): 1091–1092.PubMedCrossRefGoogle Scholar
  105. Hsu Y-C (1965) Detergent-splitting enzyme from Pseudomonas. Nature 207 (4995): 385–388.PubMedCrossRefGoogle Scholar
  106. Huang J, Mathews HR (1990) Application of sodium dodecyl sulfate-gel electrophoresis to low molecular weight polypeptides. Anal Biochem 188: 114–117.PubMedCrossRefGoogle Scholar
  107. Huddieston RL, Allred RC (1967) Surface active agents: Biodegradability of detergents. Soil Biochem 1967: 343–370.Google Scholar
  108. Igarashi H (1986) With which component of the bovine isolated cornea does sodium lauryl sulfate react to produce opacity? Toxicol Lett 32: 249–253.PubMedCrossRefGoogle Scholar
  109. Imokawa G, Sumura K, Katsumi M (1975) Study on skin roughness caused by surfactants. II. Correlation between protein denaturation and skin roughness. J Am Oil Chem Soc 52: 490–493.Google Scholar
  110. Imokawa G (1979) Comparative study on the mechanism of irritation by sulfate and phosphate type of anionic surfactants. J Soc Cosmet Chem 31: 45–66.Google Scholar
  111. Irgolic KJ, Hobill JE (1987) Simultaneous inductively coupled argon plasma atomic emission spectrometer as a sulfur-specific detector for the HPLC analysis of sulfur-containing surfactants. Spectrochim Acta 42B (l-2): 269–273.CrossRefGoogle Scholar
  112. Itoh S, Setsuda S, Utsunomiya A, Naito S (1979) Studies on the biodegradation test method of chemical substances. II. Ultimate biodegradabilities of some anionic, nonionic, and cationic surfactants estimated by carbon dioxide production. Yu- kagaku 28 (3): 199–204.Google Scholar
  113. Jana PK, Moulik SP (1991) Interaction of bile salts with hexadecyltrimethylammo- nium bromide and sodium dodecyl sulfate. J Phys Chem 95: 9525–9532.CrossRefGoogle Scholar
  114. Kalmanzon E, Zlotkin E, Cohen R, Barenholz Y (1992) Liposomes as a model for the study of the mechanism of fish toxicity of sodium dodecyl sulfate in sea water. Biochim Biophys Acta 1103: 148–156.PubMedCrossRefGoogle Scholar
  115. Kästner W (1992a) Pharmacological properties. In: Gloxhuber Ch, Künstler K (eds) Anionic surfactants: Biochemistry, toxicology, dermatology, 2nd ed. Marcel Dekker, New York, pp 419–448.Google Scholar
  116. Kästner W (1992b) Local tolerance (animal tests): Mucous membranes and skin. In: Gloxhuber Ch, Künstler K (eds) Anionic surfactants: Biochemistry, toxicology, dermatology, 2nd ed. Marcel Dekker, New York, pp 127–290.Google Scholar
  117. Kékicheff P (1989) Phase diagram of sodium dodecyl sulfate-water system. 2. Complementary isoplethal and isothermal phase studies. J Coll Int Sei 131 (1): 133–152.CrossRefGoogle Scholar
  118. Kékicheff P, Grabielle-Madelmont C, Ollivon M (1989) Phase diagram of sodium dodecyl sulfate-water system. 1. A calorimetric study. J Coll Int Sei 131 (1): 112–132.CrossRefGoogle Scholar
  119. Kermici M, Aubin G (1976) Evaluation of the dermotoxicity of detergents through biochemical studies of the stratum corneum in man and animals. Labo- Pharma—Probl Tech 24 (255): 592–597.Google Scholar
  120. Kerridge D, Hörne RW, Glauert AM (1962) Structural components of flagella from Salmonella typhimurium. J Mol Biol 4: 227–238.PubMedCrossRefGoogle Scholar
  121. Kikuchi M, Wakabayashi A, Kojima H, Yoshida T (1978) Uptake, distribution, and elimination of sodium linear alkylbenzene sulfonate and sodium alkyl sulfate in carp. Ecotoxicol Environ Saf 2: 115–127.PubMedCrossRefGoogle Scholar
  122. Kikuchi M, Wakabayashi A (1979) Effects of surfactants on aquatic organisms. Seitai Kagaku 1 (4): 195–209.Google Scholar
  123. Kikuchi M, Wakabayashi A (1984) Lethal response of some surfactants to medaka Oryzias latipes with relation to chemical structure. Bull Jpn Soc Sei Fish 50 (7): 1235–1240.CrossRefGoogle Scholar
  124. Kimura M, Komaki M, Nakajima T, Nakahara H, Fukuda K (1990) Influence of detergent builders on surface properties of sodium dodecyl sulfate under dynamic and static conditions. J Am Oil Chem Soc 67 (10): 698–704.CrossRefGoogle Scholar
  125. Kimura T, Imamura H, Hasagawa K, Yoshida A (1982) Mechanisms of toxicities of some detergents added to a diet and of the ameliorating effect of dietary fiber in the rat. J Nutr Sei Vitaminol 28 (5): 483–489.CrossRefGoogle Scholar
  126. Kimura T, Yoshida A (1982) Toxicity of detergent feeding and effect of the concurrent feeding of dietary fiber in rats. Nutr Rep Int 26 (2): 271–279.Google Scholar
  127. Kiprianov EA, Stavskaya SS, Boiko Ol, Krivets IA (1978) Assimilation of sodium dodecyl sulfate by bacteria of the Pseudomonas genus. Mikrobiol Zh 40 (4): 503–505.Google Scholar
  128. Kirk-Othmer (1984) Encyclopedia of chemical technology, 3rd ed. John Wiley and Sons, New York.Google Scholar
  129. Kirsner JB, Wolff RA (1944) The effect of sodium alkyl sulfates on the peptic activity of the gastric contents and on the healing of gastric ulcer in man. Gastroenterology 2: 93–101.Google Scholar
  130. Kobayashi H, Yoshida S, Hiraga K (1974) Toxicity of higher alcohol detergents. I. Acute toxicity of sodium dodecyl sulfate. Tok Tori Eisei Kenky Kenkyu Nempo 25: 663–667.Google Scholar
  131. Kopp R, Müller J (1965) Effects of related anionic detergents on flagellation, motility, swarming, and growth of Proteus. Appl Microbiol 13 (6): 950–955.PubMedGoogle Scholar
  132. Kozlik V, Mosinger B (1956) The influence of detergents (saponates) on the resorption from the digestive tract of warm-blooded animals. II. The influence of sodium lauryl sulfate on glucose resorption from the digestive tract. Pharmazie 11: 22–24.Google Scholar
  133. Kreiss K, Gonzalez MG, Conright KL, Scheere AR (1982) Respiratory irritation due to carpet shampoo: Two outbreaks. Environ Int 8: 337–341.Google Scholar
  134. Kwak YS, Lee KT, Kim DN (1974) Study of drugs affecting cholesterol-induced atherosclerosis in rabbits. In: Proceedings of 1st Brook Lodge symposium on anti-atherosclerosis drug discovery. Plenum Press, New York, pp 149–167.Google Scholar
  135. Lacks SA, Springhorn SS, Rosenthal AL (1979) Effect of the composition of so-dium dodecyl sulfate preparations on the renaturation of enzymes after Polyacrylamide gel electrophoresis. Anal Biochem 100: 357–363.PubMedCrossRefGoogle Scholar
  136. Lammintausta K, Maibach HI, Wilson D (1988) Susceptibility to cumulative and acute dermatitis. Contact Derm 19: 84–90.PubMedCrossRefGoogle Scholar
  137. LaRoche G, Eisler R, Tarzwell CM (1970) Bioassay procedures for oil and oil dispersant toxicity evaluation. J Water Pollut Contr Fed 42 (11): 1982–1989.Google Scholar
  138. Leach BS, Collawn JF, Fish WW (1980) Behavior of glycopolypeptides with empirical molecular weight estimation methods. 1. In sodium dodecyl sulfate. Biochemistry 19: 5734–5741.Google Scholar
  139. Lee DR (1980) Reference toxicants in quality control of aquatic bioassays. In: Buikema AL, Jr., Cairns A, Jr. (eds) Aquatic invertebrate bioassays. STP 715, ASTM, Philadelphia, PA, pp 188–199.CrossRefGoogle Scholar
  140. Lenova LI, Stavskaya SS, Ratushnaya MYa (1980) Effect of sodium dodecyl sulfate on single-cell Chlorella algae. Gidrobiol Zh 16 (3): 83–87.Google Scholar
  141. Lewis PA, Weber CI (1985) A study of the reliability of Daphnia acute toxicity tests. In: Cardwell RD, Purdy R, Bahner RC (eds) Aquatic toxicology and hazard assessment: 7th symposium. STP 854, ASTM, Philadelphia, PA, pp 73–86.CrossRefGoogle Scholar
  142. Lewis PA, Horning WB (1991) Differences in acute toxicity test results of three reference toxicants on Daphnia at two temperatures. Environ Toxicol Chem 10: 1351–1357.Google Scholar
  143. Lish PM, Weikel JH (1959) Influence of surfactants on absorption from the colon. Toxicol Appl Pharmacol 1: 501–504.PubMedCrossRefGoogle Scholar
  144. Llenado RA, Jamieson RA (1981) Surfactants. Anal Chem 53: 174R–182R.Google Scholar
  145. Lodén M (1990) The simultaneous penetration of water and sodium lauryl sulfate through isolated human skin. J Soc Cosmet Chem 41: 227–233.Google Scholar
  146. Löttermoser A, Stoll F (1933) The surface and interfacial activities of salts of the fatty acid alcohol sulfuric acid esters. Kolloid-Z 63: 49–61.CrossRefGoogle Scholar
  147. Luminski I, Lendrum AC (1942) The effect of surface-active agents on B. Proteus. J Pathol Bacteriol 54: 421–433.Google Scholar
  148. Lundahl P, Cebridenc R, Xuereff R (1972) Qualités biologiques de quelques agents de surface anioniques. In: Proceedings of 6th international congress on surface active agents. Chemie, physikalische chemie, und an Wendungstechnik de grenzflächenaktiven Stoffe. Carl Hanser Verlag, Munich.Google Scholar
  149. Lundahl P, Cebridenc R (1978) Molecular structure-biological properties: Relationships in anionic surface-active agents. Water Res 12: 25–30.Google Scholar
  150. Mackie AM, Singh HT, Fletcher TC (1975) Studies on the effects of seastar ( Mar- thasterias glacialis) saponins and synthetic surfactants in the plaice Pleuronectes platessa. Mar Biol 29: 307–314.Google Scholar
  151. Maizel JV (1966) Acrylamide-gel electrophorograms by mechanical fractionation: Radioactive adenovirus proteins. Science 151: 988–990.PubMedCrossRefGoogle Scholar
  152. Mann AH, Reid VW (1971) Biodegradation of synthetic detergents evaluation by community trials. 3. Primary alcohol sulphates. J Am Oil Chem Soc 48: 798–799.Google Scholar
  153. Marchesi JR, Russell NJ, White GF, House WA (1991) Effects of surfactant ad-sorption and biodegradability on the distribution of bacteria between sediments and water in a freshwater microcosm. Appl Environ Microbiol 57 (9): 2507–2513.PubMedGoogle Scholar
  154. Martinez Garcia JP, Hernandez Gimenez E, Martinez Germes P, Dubon Perez F (1980) Effects of two anionic detergents on microorganisms of sulfur biogeo- chemical cycle. Rev Agroquim Tecnol Aliment 20 (2): 273–284.Google Scholar
  155. Matson TP (1978) The workhorse surfactants: LAS, alcohol sulfates, and ether sulfates. J Am Oil Chem Soc 56: 66–69.CrossRefGoogle Scholar
  156. Matthies W (1992) Dermatological observations (humans). In: Gloxhuber Ch, Künstler K (eds) Anionic surfactants: Biochemistry, toxicology, dermatology, 2nd ed. Marcel Dekker, New York, pp 291–329.Google Scholar
  157. Mehlhorn RJ (1976) The interaction of ionic detergents with submitochondrial membranes. In: Packer L, Gômez-Puyou A (eds) Mitochondria: Bioenergetics, biogenesis, and membrane structure. Academic Press, New York, pp 381–387.Google Scholar
  158. Mehlhorn RJ, Packer L (1976) Inactivation and reactivation of mitochondrial respiration by charged detergents. Biochim Biophys Acta 423 (3): 382–397.PubMedCrossRefGoogle Scholar
  159. Mishin VM, Pospelova LN, Lyakhovich VV (1976) Effect of various detergents on kinetic characteristics of lipid peroxidation systems in rat liver microsomes. Arch Biochem Biophys 174 (2): 630–636.PubMedCrossRefGoogle Scholar
  160. Miura Y, Hisaki H, Fukushima B, Nagai T, Ikeda T (1989) Detergent induced changes in serum lipid composition in rats. Lipids 24 (11): 915–918.PubMedCrossRefGoogle Scholar
  161. Moran MR, DeSalva S J, Weiss W (1967) A method to study detergent adsorption and penetration into human skin surfaces. Proc Sei Sec, Toilet Goods Assoc 18: 16–22.Google Scholar
  162. Mosinger B, Kozlik V (1956) The influence of detergents (saponates) on the resorption from the digestive tract of warm-blooded animals. III. The influence of sodium lauryl sulfate on the resorption of glucose from the gut. Pharmazie 11: 539–542.Google Scholar
  163. Mukvich NS, Ovcharov LF, Rotmistrov MN, Kirillova LG (1979) Genetic study of Pseudomonas aeruginosa 1C strain destroying alkyl sulfates. Khim Tekhnol Vody 1 (1): 79–81.Google Scholar
  164. Nadasy M, Dobozy OK, Bartha B, Palfi D, Kolcsei M (1972) Surfactant applica-tions in farming. In: Proceedings of 6th international congress on surface active agents. Vol 3, chemie, physikalische chemie, und anwendungstechnik de grenzflächenaktiven Stoffe. Carl Hanser Verlag, Munich, pp 463–471.Google Scholar
  165. Nakamura J, Takada S, Ueda S, Hamaura T, Yamamoto A, Kimura T, Sezaki H (1985) Assessment of pharmaceutical excipient-induced gastrointestinal mucosal damage in rats in vivo by measuring the permeation of phenolsulfonphthalein. Chem Pharmacol Bull 33 (8): 3527–3529.CrossRefGoogle Scholar
  166. Newsome CS (1982) Susceptibility of various fish species at different stages of development to aquatic pollutants. Rept EUR 7549, Community of European Communities, Environmental Quality of Life, pp 284–295.Google Scholar
  167. Nickerson KW, Aspedon A (1992) Detergent-shock response in enteric bacteria. Molec Microbiol 6 (8): 957–961.CrossRefGoogle Scholar
  168. Nilsson GE (1977) Measurement of water exchange through skin. Med Biol Eng Comput 15: 209–218.PubMedCrossRefGoogle Scholar
  169. Nilsson GE, Tenland T, Oberg PÀ (1980) Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans Biomed Eng 27: 597–604.PubMedCrossRefGoogle Scholar
  170. Nissim JA (1960) Reduction of the intestinal absorption of glucose, methionine, and sodium butyrate by the cation trimethylhexadecylammonium. Nature 187: 308–310.PubMedCrossRefGoogle Scholar
  171. Nye PA (1964) Heat loss in wet ducklings and chicks. Ibis 106 (2): 189–197.CrossRefGoogle Scholar
  172. Nyholm N, Damgaard BM (1990) A comparison of the algal growth inhibition toxicity method with the short term 14C-assimilation test. Chemosphere 21 (4-5): 671–679.CrossRefGoogle Scholar
  173. Oba K, Yoshida Y, Tomiyama S (1967) Biodegradation of synthetic detergents. I. Biodegradation of anionic surfactants under aerobic and anaerobic conditions. Yukagaku 16 (9): 517–523.Google Scholar
  174. Oba K, Miura K, Sekiguchi H, Yagi R, Mori A (1976) Microanalysis of anionic surfactants in waste water by infrared spectroscopy. Water Res 10: 149–155.CrossRefGoogle Scholar
  175. Oba K, Takei R (1992) Carcinogenic, mutagenic/genetic toxicity, and teratogen-ic properties. In: Gloxhuber Ch, Künstler K (eds) Anionic surfactants: Bio-chemistry, toxicology, dermatology, 2nd ed. Marcel Dekker, New York, pp 331–408.Google Scholar
  176. OECD (1971) Pollution by detergents: Determination of biodegradability of anionic synthetic surface-active agents. Organization for Economic Cooperation and Development, Paris.Google Scholar
  177. Okpokwasili GC, Odokuma LO (1990) Effect of salinity on biodégradation of oil spill dispersants. Waste Mgt 10: 141 - 146.CrossRefGoogle Scholar
  178. Olson KJ, Dupree RW, Plomer ET, Rowe VK (1962) Toxicological properties of several commercially available surfactants. J Soc Cosmet Chem 13: 469–476.Google Scholar
  179. Ossipov NN, Zaslavsky BYu, Rogozhin SV (1978) Action of surface-active sub-stances on biological membranes. I. Effect of chemical modification of membranes on hemolysis of erythrocytes by sodium alkyl sulfates. Coll Polym Sci 256: 1105–1109.Google Scholar
  180. Ottery J, Olavesen AH, Dodgeson KS (1970) Metabolism of dodecyl sulfate in the rat: Non-enzymic liberation of sulphate and 7-butyrolactone from the major metabolite, butyric acid 4-sulphate. Life Sci 9 (11): 1335–1340.CrossRefGoogle Scholar
  181. Partearroyo MA, Ostolaza H, Goni FM, Barbera-Guillem E (1990) Surfactant- induced cell toxicity and cell lysis. Biochem Pharmacol 40 (6): 1323–1328.CrossRefGoogle Scholar
  182. Patton J (1963) Surface active agents. In: McKee JE, Wolf HW (eds) Water quality criteria, 2nd ed. Publ 3-A, California State Water Quality Control Board, Sacramento, CA, pp 392–404.Google Scholar
  183. Payne WJ (1963) Pure culture studies of the degradation of detergent compounds. Biotechnol Bioeng V: 355–365.Google Scholar
  184. Payne WJ, Feisal VE (1963) Bacterial utilization of dodecyl sulfate and dodecyl benzene sulfonate. Appl Microbiol 11: 339–344.PubMedGoogle Scholar
  185. Payne WJ, Williams JP, Mayberry WR (1965) Primary alcohol sulfatase in a Pseu- domonas species. Appl Microbiol 13 (5): 698–701.PubMedGoogle Scholar
  186. Pessah E, Wells PG, Schneider JR (1975) Dodecyl sodium sulfate (DSS) as an interlaboratory reference toxicant in fish bioassays. In: Craig GR (ed) Proceedings of 2nd annual aquatic toxicity workshop. Ontario Ministry of the Environment, Toronto, Canada, pp 93–121.Google Scholar
  187. Pethica BA, Schulman JH (1953) Physical chemistry of hemolysis by surface-active agents. J Biochem 53: 177–185.Google Scholar
  188. Petrea V (1979) Effect of sodium dodecylsulfate of polluted water on the physiological processes in the alga Chlorella vulgaris. Rev Roum Biol, Ser Biol Veg 24 (1): 55–62.Google Scholar
  189. Piorr R (1987) Structure and application of surfactants. In: Falbe J (ed) Surfactants in consumer products: Theory, technology, and application. Springer-Verlag, Berlin, pp 5–22.CrossRefGoogle Scholar
  190. Piper WD, Maxwell KE (1971) Mode of action of surfactants on mosquito pupae. J Econ Entomol 64 (3): 601–606.PubMedGoogle Scholar
  191. Potokar MS (1992) Acute, subacute, and chronic toxicity data on anionics. In: Gloxhuber Ch, Kiinstler K (eds) Anionic surfactants: Biochemistry, toxicology, dermatology, 2nd ed. Marcel Dekker, New York, pp 81–116.Google Scholar
  192. Powney J, Addison CC (1937) The properties of detergent solutions. Trans Faraday Soc 33: 1243–1260.CrossRefGoogle Scholar
  193. Price KS, Waggy GT, Conway RA (1974) Brine shrimp bioassay and seawater BOD of petrochemicals. J Water Pollut Contr Fed 46 (l): 63–77.Google Scholar
  194. Prottey C, Ferguson T (1975) Factors which determine the skin irritation potential of soaps and detergents. J Soc Cosmet Chem 26: 29–46.Google Scholar
  195. Render J (1990) Effect of sodium dodecyl sulfate on polar lobe formation and function in Ilyanassa obsoleta embryos. J Exp Zool 253: 30–37.PubMedCrossRefGoogle Scholar
  196. Rhein JD, Robbins CR, Fernee K, Cantore R (1986) Surfactant structure effects on swelling of isolated human stratum corneum. J Soc Cosmet Chem 37: 125–139.Google Scholar
  197. Rottem S, Stein O, Ragin S (1968) Reassembly of mycoplasma membranes disaggregated by detergents. Arch Biochem Biophys 125: 46–56.PubMedCrossRefGoogle Scholar
  198. Russell WC, Choules GL, Gauthier DA (1981) Detergents and waterfowl. J Zoo Anim Med 12: 10–13.CrossRefGoogle Scholar
  199. Sales D, Quiroga JM, Gómez-Parra A (1987) Primary biodégradation kinetics of anionic surfactants in marine environment. Bull Environ Contam Toxicol 39: 385–392.PubMedCrossRefGoogle Scholar
  200. Sales Marquez D, Naranjo Cabello JM, Flores Luque V, Gomez Herrera C (1981) Biodegradability of sodium or triethylammonium dodecylsulfates in sea water. Grasas Acietas 32 (5): 305–311.Google Scholar
  201. Sánchez Leal J, González J J, Comelles F, Campos E, Ciganda T (1991) Biodegradability and toxicity of anionic surfactants. Acta Hydrochim Hydrobiol 19 (6): 703–709.CrossRefGoogle Scholar
  202. Schwarz G, Vaeth E (1987) Analysis of surfactants and surfactant formulations. In: Falbe J (ed) Surfactants in consumer products: Theory, technology, and application. Springer-Verlag, Berlin, pp 440–474.CrossRefGoogle Scholar
  203. Seitz JC, Whitmore CG (1988) Measurement of erythema and tanning responses in human skin using the tri-stimulus colorimeter. Dermatología 177: 70–75.CrossRefGoogle Scholar
  204. Shapiro AL, Scharff MD, Maizel JV, Uhr JW (1966) Polyribosomal synthesis and assembly of the H and L chains of gamma globulin. Proc Natl Acad Sei 56: 216–221.CrossRefGoogle Scholar
  205. Shapiro AL, Viñuela E, Maizel JV (1967) Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Comm 28 (5): 815–820.PubMedCrossRefGoogle Scholar
  206. Shino T, Ito S (1979) Effects of several kinds of surfactants on human skin. Hifu 21 (3): 309–318.Google Scholar
  207. Shinoda K (1967) Solvent properties of surfactant solutions. Surfactant science series, vol 2. Marcel Dekker, New York.Google Scholar
  208. Siegel IA, Gordon HP (1985) Effects of surfactants on the permeability of canine oral mucosa in vitro. Toxicol Lett 26 (2-3): 153–158.PubMedCrossRefGoogle Scholar
  209. Smith, LJ (1991) The effectiveness of sodium lauryl sulfate as a shark repellant in a laboratory test situation. J Fish Biol 38: 105–113.CrossRefGoogle Scholar
  210. Smyth HF, Seaton J, Fischer L (1941) Some pharmacological properties of Terigol penetrants. J Int Hyg Toxicol 23: 478–483.Google Scholar
  211. Sones EL, Hoyt JL, Sooter A J (1979) The determination of alcohol and ether sulfates and their respective alkyl carbon distributions in detergent formulations by gas chromatography. J Am Oil Chem Soc 56 (7): 689–700.CrossRefGoogle Scholar
  212. Stavskaya SS, Krivets IA, Samoilenko LS (1979) Study of the products of the bacterial degradation of sodium dodecyl sulfate. Prikl Biochim Mikrobiol 15 (5): 790–793.Google Scholar
  213. Stavskaya SS, Krivets IA, Rotmistrov MN (1981) Alkylsulfate degradation by yeast cultures. Dopov Akad Nauk Ukr RSR, Ser B: Giol Khim Biol Nauki (8): 73–75.Google Scholar
  214. Stavskaya SS, Taranova LA (1981) Effect of cultivation conditions on alkyl sulfate degradation by Pseudomonas sp. 2T/1. Prikl Biochim Mikrobiol 17 (2): 300–304.Google Scholar
  215. Sterzel W (1992) Daily human intake. In: Gloxhuber Ch, Künstler K (eds) Anionic surfactants: Biochemistry, toxicology, dermatology, 2nd ed. Marcel Dekker, New York, pp 411–417.Google Scholar
  216. Stigter D (1964) Hydration, shape, and charge of micelles of sodium dodecyl sulfate and dodecyl ammonium chloride. In: Proceedings of 4th international congress on surface active substances. Gordon and Breach, London.Google Scholar
  217. Sund RB (1975a) Effect of dodecylsulfate upon net sodium and water transport from tied jejunal loops in anesthetized rats. Acta Pharmacol Toxicol 37 (4): 282–296.CrossRefGoogle Scholar
  218. Sund RB (1975b) Effect of some ionized and neutral surfactants and bile acids upon sodium and water transport from tied jejunal loops in anesthetized rats. Acta Pharmacol Toxicol 37 (4): 297–308.CrossRefGoogle Scholar
  219. Sund RB, Matheson I (1978) Glucose and cation transport in rat jejunum, ileum, and colon in vivo: Effects of anionic and nonionic surfactants, and of desoxy- cholate. Acta Pharmacol Toxicol 42 (4): 253–258.CrossRefGoogle Scholar
  220. Sund RB, Olsen G (1981) Net sodium and glucose transport in the jejunum, ileum, and colon of anesthetized rats in response to intraluminal theophylline and anionic surfactants. Acta Pharmacol Toxicol 49 (1): 65–71.CrossRefGoogle Scholar
  221. Swisher RD (1963) The chemistry of surfactant biodégradation. J Am Oil Chem Soc 40: 648–656.CrossRefGoogle Scholar
  222. Swisher RD (1966) Surfactant effects on humans and other mammals. Scientific tech rept 4, Soap and Detergent Association, New York.Google Scholar
  223. Swisher RD (1970) Surfactant biodégradation. Surfactant science series, vol 3. Marcel Dekker, New York.Google Scholar
  224. Swisher RD (1987) Surfactant biodégradation, 2nd ed. Surfactant science series, vol 18. Marcel Dekker, New York.Google Scholar
  225. Takahashi A, Ando H, Kubo Y, Hiraga K (1976) Effects of dermal application of sodium dodecyl sulfate (SDS) on pregnant mice and their fetuses. Tok Tori Eisei Kenky Kenkyu Nempo 27 (2): 113–118.Google Scholar
  226. Tanaka Y (1976) Effects of the surfactants on the cleavage and further development of the sea urchin embyros. I. The inhibition of micromere formation at the fourth cleavage. Dev Grow Diff 18 (2): 113–122.CrossRefGoogle Scholar
  227. Tarazona JV, Nunez O (1987) Acute toxicity of synthetic detergents to snails: Effect of sodium lauryl sulfate on Limneaperegra shells. Bull Environ Contam Toxicol 39: 1036–1040.Google Scholar
  228. Tatem HE, Anderson JW, Neff JM (1976) Seasonal and laboratory variations in the health of grass shrimp Palaemonetes pugio: Dodecyl sodium sulfate bioassay. Bull Environ Contam Toxicol 16 (3): 368–375.PubMedCrossRefGoogle Scholar
  229. Thomas OR, White GF (1989) Metabolic pathway for the biodégradation of sodium dodecyl sulfate by Pseudomonas sp. C12B. Biotechnol Appl Biochem 11: 318–327.PubMedGoogle Scholar
  230. Tomiyama S, Takao M, Mori A, Sekiguchi H (1969) New household detergent based on AOS. J Am Oil Chem Soc 46: 208–220.CrossRefGoogle Scholar
  231. Tomiyama S (1974) Effects of surfactants on fish. Nippon Suisan Gakkaishi 40 (12): 1291–1296.CrossRefGoogle Scholar
  232. Tomizawa M, Kondo T (1971) Mechanism of hemolysis by anionic surface-active agents. Kolloid-Z Z Polymere 246: 694–699.CrossRefGoogle Scholar
  233. Tomlinson J A, Faithfull EM (1979) Effects of fungicides and surfactants on the zoospores of Olpidium brassicae. Ann Appl Biol 93: 13–19.CrossRefGoogle Scholar
  234. Tovell PWA, Newsome C, Howes D (1974) Effect of water hardness on the toxicity of an anionic detergent to fish. Water Res 8: 291–296.CrossRefGoogle Scholar
  235. Tovell PWA, Howes D, Newsome C (1975) Absorption, metabolism, and excretion by goldfish of the anionic detergent sodium lauryl sulphate. Toxicology 4: 17–29.PubMedCrossRefGoogle Scholar
  236. Tukmachev VA, Nedospasova LV, Zaslavski BYu, Rogoshin SV (1979) Action of sodium dodecyl sulfate on biological membranes. Biofizika 24 (1): 55–60.PubMedGoogle Scholar
  237. Tusing TW, Paynter OE, Opdyke DL, Snyder FH (1962) Toxicologic studies on sodium lauryl glyceryl ether sulphonate and sodium lauryl trioxyethylene sulphate. Toxicol Appl Pharmacol 4: 402–409.PubMedCrossRefGoogle Scholar
  238. Urano K, Saito M (1985) Biodegradability of surfactants and inhibition of surfactants to biodégradation of other pollutants. Chemosphere 14 (9): 1333–1342.CrossRefGoogle Scholar
  239. van der Valk PG, Maibach HI (1989a) Post-application occlusion substantially increases the irritant response of the skin to repeated short-term sodium lauryl sulfate ( SLS) exposure. Contact Derm 21: 335–338.Google Scholar
  240. van der Valk PG, Maibach HI (1989b) Potential for irritation increases from the wrist to the cubital fossa. Brit J Derm 121 (6): 709–712.PubMedCrossRefGoogle Scholar
  241. Varadaraj R, Bock J, Zushma S, Brons N (1992) Influence of hydrocarbon chain branching on interfacial properties of sodium dodecyl sulfate. Langmuir 8: 14–17.CrossRefGoogle Scholar
  242. Varani J, Alstrom A, Griffiths CE, Voorhees JJ (1991) Induction of proliferation of growth-inhibited keratinocytes and fibroblasts in monolayer culture by sodium lauryl sulfate: Comparison with all-trans retinoic acid. J Invest Derm 97 (5): 917–921.PubMedCrossRefGoogle Scholar
  243. Verma SR, Mohan D, Dalela RC (1978) Studies on the relative toxicity of few synthetic detergents to a fish Macrones vittatus. Acta Hydrochim Hydrobiol 6 (2): 121–128.CrossRefGoogle Scholar
  244. Verma SR, Pal N, Tyagi K, Dalela RC (1979) Toxicity of Swascol IP ( SLS) to Channa punctatus and Cirrhina mrigala: Biochemical alterations. Bull Environ Contam Toxicol 21: 711–718.Google Scholar
  245. Verma SR, Tonk IP, Dalela RC (1981) Determination of the maximum acceptable toxicant concentration (MATC) and the safe concentration for certain aquatic pollutants. Acta Hydrochim Hydrobiol 9 (3): 247–254.CrossRefGoogle Scholar
  246. Verriopoulos G, Maraitou-Apostolopoulou M (1982) Comparative toxicity of oil (Tunisian crude oil, Zaraitine type), oil dispersant (Finasol OSR-2), and oil/ dispersant mixture on Artemia salina. J Etud Pollut Mar Mediter 6: 713–717.Google Scholar
  247. Verriopoulos G, Maraitou-Apostolopoulou M, Xatzispirou A (1986) Evaluation of metabolic responses of Artemia salina to oil and oil dispersant as a potential indicator of toxicant stress. Bull Environ Contam Toxicol 36: 444–451.PubMedCrossRefGoogle Scholar
  248. Vijayendran BR (1977) Purity of commercial sodium lauryl sulfate. J Coll Int Sci 60 (2): 418–419.CrossRefGoogle Scholar
  249. Wakabayashi M, Kikuchi M, Inoue W, Kawahara H, Koido Y (1975) Toxicity of detergents to some aquatic organisms. I. Acute toxicity of anionic surfactants to Oryzias latipes. Suisan Zoshoku 23 (3): 119–124.Google Scholar
  250. Wakabayashi M, Kikuchi M, Kojima H, Yoshida T (1978) Bioaccumulation profile of sodium linear alkylbenzene sulfonate and sodium alkyl sulfate in carp. Che-mosphere 11: 917–924.CrossRefGoogle Scholar
  251. Wakabayashi M, Kikuchi M, Kojima H, Yoshida T (1980) Effect of alkyl chain on the uptake, distribution, and excretion of 35S-labeled alkyl sulfates in carp. Ecotoxicol Environ Saf 4 (2): 195–206.PubMedCrossRefGoogle Scholar
  252. Wakabayashi M, Kikuchi M, Sato A, Yoshida T (1981) Relationship between expo-sure concentration and bioaccumulation of surfactants. Nippon Suisan Gakkaishi 47 (10): 1383 - 1387.CrossRefGoogle Scholar
  253. Walker AIT, Brown VKH, Ferrigan LW, Pickering RG, Williams DA (1967) Toxicity of sodium lauryl sulfate, sodium lauryl ethoxysulfate, and corresponding surfactants derived from synthetic alcohols. Food Cosmet Toxicol 5: 763–769.PubMedCrossRefGoogle Scholar
  254. Weber K, Osborne M (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244 (16): 4406–4412.PubMedGoogle Scholar
  255. White GF, Russell NJ, Day MJ (1985) A survey of sodium dodecyl sulphate (SDS) resistance and alkylsulphatase production in bacteria from clean and polluted sites. Environ Pollut, Ser A 37: 1–11.Google Scholar
  256. Wilhelm K-P, Surber C, Maibach HI (1989) Quantification of sodium lauryl sulfate irritation dermatitis in man: Comparison of four techniques—skin color reflectance, transepidermal water loss, laser Doppler flow measurement, and visual scores. Arch Derm Res 281: 293–295.Google Scholar
  257. Wilhelm K-P, Maibach HI (1990) Susceptibility to irritant dermatitis induced by sodium lauryl sulfate. J Am Acad Derm 23 (1): 122–124.PubMedCrossRefGoogle Scholar
  258. Wilhelm K-P, Surber C, Maibach HI (1991a) Effect of sodium lauryl sulfate- induced skin irritation on in vitro percutaneous absorption of four drugs. J Invest Derm 96 (6): 963–967.PubMedCrossRefGoogle Scholar
  259. Wilhelm K-P, Surber C, Maibach HI (1991b) Effect of sodium lauryl sulfate- induced skin irritation on in vivo percutaneous penetration of four drugs. J Invest Derm 97 (5): 927–932.PubMedCrossRefGoogle Scholar
  260. Williams JP, Payne WJ (1964) Enzymes induced in a bacterium by growth on sodium dodecyl sulfate. Appl Microbiol 12 (4): 360–362.PubMedGoogle Scholar
  261. Williams OB, Rees HB (1949) Bacterial utilization of anionic surface-active agents. J Bacteriol 58: 823–824.PubMedGoogle Scholar
  262. Williams RJ, Phillips JN, Mysels KJ (1955) The critical micelle concentration of sodium lauryl sulphate at 25 °C. Trans Faraday Soc 51: 729–737.CrossRefGoogle Scholar
  263. Williams RJ (1982) The separation of ionic organosulfur compounds by ion chromatography. J Chromatogr Sci 20: 560–565.Google Scholar
  264. Wilson PT, Lentz TL (1988) Binding of a-bungarotoxin to synthetic peptides corresponding to residues 173-204 of the a subunit of Torpedo, calf, and human acetylcholine receptor and restoration of high-affinity binding by sodium dodecyl sulfate. Biochemistry 27: 6667–6674.PubMedCrossRefGoogle Scholar
  265. Woldringh CL, van Iterson W (1972) Effects of treatment with sodium dodecyl sulfate on the ultrastructure of Escherichia coli. J Bacteriol 111: 801–813.PubMedGoogle Scholar
  266. Woodward G, Calvery HO (1945) Toxicological properties of surface-active agents. Proc Sci Sec, Toilet Goods Assoc 3: 21–24.Google Scholar
  267. Yam J, Booman A, Broddle W, Geiger L, Hienze JE, Lin YJ, McCarthy K, Reiss S, Sawin V, Sedlak RI, Slesinski RS, Wright GA (1984) Surfactants: A survey of short-term genotoxicity testing. Food Chem Toxicol 22 (9): 761–769.PubMedCrossRefGoogle Scholar
  268. Yamamoto K, Motomizu S (1987) Solvent extraction-spectrophotometric determination of anionic surfactants in seawater. Analyst 112: 1405–1408.CrossRefGoogle Scholar
  269. Yoshikawa H (1978) The effects of some surfactants on hamster cheek pouch mucosa. J Soc Cosmet Chem Jpn 12 (2): 44–50.Google Scholar
  270. Yusko SC, Higgins ES, Rodgers KS (1972) Uncoupling by sodium alkyl sulfates of energy-linked functions of rat liver mitochondria. Proc Soc Exp Biol Med 144: 10–13.Google Scholar
  271. Zelenak JP, Alarie Y, Weyel DA (1982) Assessment of the cough reflex caused by inhalation of sodium lauryl sulfate and citric acid aerosols. Fund Appl Toxicol 2: 177–180.CrossRefGoogle Scholar
  272. Zhi-Juan Y, Xingkang Zh, Guangzhi X, Guo-xi Zh (1990) Physicochemical properties of aqueous mixtures of tetrabutylammonium bromide and anionic surfactants. 3. Effects of surfactant chain length and salinity. J Phys Chem 94: 3675–3681.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1993

Authors and Affiliations

  • Michael M. Singer
    • 1
  • Ronald S. Tjeerdema
    • 1
  1. 1.Department of Chemistry and Biochemistry and Aquatic Toxicology Program, Institute of Marine SciencesUniversity of CaliforniaSanta CruzUSA

Personalised recommendations