Skip to main content

Modeling of the Coupling of the Left Ventricle to the Peripheral Circulation

  • Chapter
Ventricular/Vascular Coupling
  • 96 Accesses

Abstract

The interaction of the heart and circulation has been of long-standing interest to physiologists, cardiologists, and researchers in biomechanics. In the absence of neural and chemical controls of the circulation, the mechanical coupling of these systems is an important field in itself that must be studied thoroughly before the fully controlled circulation can be understood clearly. Both theoretical and experimental approaches are needed. This study presents a self-consistent theoretical model of a contracting spherical ventricle along with its accompanying outflow valve and circulatory bed (Waldman 1982). The primary emphasis of the analysis is to account for the aortic valve realistically so that its interaction with a model left ventricle and systemic circulation can be studied during ejection when both the ventricular preload and the circulatory afterload vary with time. To this end, theoretical models of each of the three subsystems are derived. The model ventricle is studied independently during isovolumetric contraction to obtain a realistic pressure preceding ejection. Behavior of the ventricle is studied further by allowing it to contract against a known pressure profile. Then the aortic valve is examined with a specified pressure drop. Finally, coupling of the ventricle, valve, and peripheral bed during ejection is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Abbott, B. C., and Mommaerts, W. F. H. M. 1959. A study of inotropic mechanisms in the papillary muscle preparation. J. Gen. Physiol. 42:533–551.

    Article  PubMed  CAS  Google Scholar 

  • Baan, J. 1978. Model of the left ventricle based on an electromagnetic contractile analog of cardiac muscle. In Baan, J., Noordergraaf, A., and Raines, J., eds. Cardiovascular System Dynamics. Cambridge, Mass.: MIT Press.

    Google Scholar 

  • Bellhouse, B., and Bellhouse, F. 1969. Fluid mechanics of model normal and stenosed aortic valves. Circ. Res. 25:693–704.

    PubMed  CAS  Google Scholar 

  • Bellhouse, B. J., and Talbot, L. 1969. The fluid mechanics of the aortic valve. J. Fluid Mech. 35(4):721–735.

    Article  Google Scholar 

  • Blinks, J. R., and Jewell, B. R. 1972. The meaning and measurement of myocardial contractility. In Bergel, D. H. ed. Cardiovascular Fluid Dynamics. London: Academic.

    Google Scholar 

  • Brady, A. J. 1965. Time and displacement dependence of cardiac contractility: problems in defining the active state and force-velocity relations. Fed. Proc. 24:1410–1420.

    PubMed  CAS  Google Scholar 

  • Brady, A. J. 1979. Mechanical properties of cardiac fibers. In Berne, R. M., Sperelakis, N. and Geiger, S. R., eds. Handbook of Physiology. Sec. 2, The Cardiovascular System, Vol. 1. Bethesda, Md. American Physiological Society.

    Google Scholar 

  • Brutsaert, D. L., Claes, V. A., and Sonnenblick, E. H. 1971. Effects of abrupt load alterations on force-velocity-length and time relations during isotonic contractions of heart muscle: load clamping. J. Physiol. (Lond.) 216:319–330.

    CAS  Google Scholar 

  • Brutsaert, D. L., Parmley, W. W., and Sonnenblick, E. H. 1969. Force-velocity-length-time relations of the contractile elements in heart muscle of the cat. Circ. Res. 24:137–149.

    PubMed  CAS  Google Scholar 

  • Edmund, K. A. P., and Nilsson, E. 1968. Mechanical parameters of myocardial contraction studied at a constant length of the contractile element. Acta Physiol. Scand. 72:205.

    Article  Google Scholar 

  • Edmund, K. A. P., and Nilsson, E. 1972. Relationship between force and velocity of shortening in rabbit papillary muscle. Acta. Physiol. Scand. 85:488–500.

    Google Scholar 

  • Endo, M. 1973. Length dependence of activation of skinned muscle fibers by calcium. Cold Spring Harbor Symp. Quant. Biol. 37:505–510.

    CAS  Google Scholar 

  • Fabiato, A., and Fabiato, F. 1975. Dependence of the contractile activation of skinned cardiac cells on the sarcomere length. Nature 256:54–56.

    Article  PubMed  CAS  Google Scholar 

  • Flugge, W. 1960. Stresses in Shells. Berlin: Springer-Verlag.

    Google Scholar 

  • Fung, Y. C. 1970. Mathematical representation of the mechanical properties of heart muscle. J. Biomech. 3:381–404.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y. C. 1971. Comparison of different models of the heart muscle. J. Biomech. 4:289–295.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, Y., and Johnson, F. E. 1912. Two modes of closure of heart valves. Heart 4:69–82.

    Google Scholar 

  • Hill, A. V. 1938. The heat of shortening and the dynamic constants of muscle. Proc. Roy. Soc. Lond. (Series B) 216:136–195.

    Article  Google Scholar 

  • Huxley, A. F. 1957. Muscle structure and theories of contraction. In Butler, J. A. V., and Katz, B., eds. Progress in Biophysics and Biophysical Chemistry, Vol. 7. Oxford: Pergamon Press, pp. 225–318.

    Google Scholar 

  • Lee, C. S. F. 1977. Fluid mechanical study of mitral valve motion. Ph.D. Thesis, University of California, Berkeley.

    Google Scholar 

  • Lee, C. S. F., and Talbot, L. 1979. A fluid-mechanical study of the closure of heart valves. J. Fluid Mech. 91:41–63.

    Article  Google Scholar 

  • Leonardo da Vinci. 1513. Quaderni d’Anatomica II, 9.

    Google Scholar 

  • Lew, W., and LeWinter, M. M. 1983. Regional circumferential lengthening patterns in the canine left ventricle. Am. J. Physiol. 245:H741–H748.

    PubMed  CAS  Google Scholar 

  • LeWinter, M. M., Kent, R. S., Kroener, J. M., Carew, T. E., and Covell, J. W. 1975. Regional differences in myocardial performance in the left ventricle of the dog. Circ. Res. 37:191–199.

    PubMed  CAS  Google Scholar 

  • McLaughlin, R. J., and Sonnenblick, E. H. 1974. Time behavior of series elasticity in cardiac muscle. Circ. Res. 34:798–811.

    PubMed  CAS  Google Scholar 

  • Mirsky, I., and Laks, M. M. 1980. Time courses of changes in the mechanical properties of the canine right and left ventricles during hypertrophy caused by pressure overload. Circ. Res. 46:530–542.

    PubMed  CAS  Google Scholar 

  • Nassar, R., Manring, A., and Johnson, E. A. 1974. Light diffraction of cardiac muscle: sarcomere motion during contraction. In Porter, R., and Fitzsimmons, D. W., eds. The Physiological Basis of Starling’s Law of the Heart. Amsterdam: Elsevier, pp. 57–82.

    Google Scholar 

  • Netter, F. H. 1969. The Heart. In The Ciba Collection of Medical Illustrations. Summit, N.J.: Ciba Pharmaceutical Co.

    Google Scholar 

  • Noble, M. I. M., Bowen, T. E., and Hefner, L. L. 1969. Force-velocity relationship of cat cardiac muscle: studies by isotonic and quick-release techniques. Circ. Res. 24:821–833.

    PubMed  CAS  Google Scholar 

  • Noble, M. I. M., and Else, W. 1972. Reexamination of the applicability of the Hill model of muscle to cat myocardium. Circ. Res. 31:580–589.

    PubMed  CAS  Google Scholar 

  • Parmley, W. W., and Talbot, L. 1979. Heart as a pump. In Berne, R. M., Sperelakis, N. and Geiger, S. R., eds. Handbook of Physiology, Sec. 2, The Cardiovascular System, Vol. 1, Bethesda, Md.: American Physiological Society.

    Google Scholar 

  • Paulus, W. J., Claes, V. A., and Brutsaert, D. L. 1979. Physiological loading of isolated feline cardiac muscle. Circ. Res. 44:491–497.

    PubMed  CAS  Google Scholar 

  • Peskin, C. S. 1972. Flow patterns around heart valves. Ph.D. Thesis, Albert Einstein College, Yeshiva University, New York.

    Google Scholar 

  • Peskin, C. S. 1982. The fluid dynamics of heart valves: experimental, theoretical, and computational methods. Ann. Rev. Fluid Mech. 14:235–259.

    Article  Google Scholar 

  • Piene, H. 1980. Interaction between the right heart ventricle and its arterial load: a quantitative solution. Am. J. Physiol. 238:H932–H937.

    PubMed  CAS  Google Scholar 

  • Piene, H., and Sund, T. 1982. Does normal pulmonary impedance constitute the optimum load for the right ventricle? Am. J. Physiol. 242:H154–H160.

    PubMed  CAS  Google Scholar 

  • Pinto, J. G., and Fung, Y. C. 1973. Mechanical properties of the stimulated papillary muscle in quick-release experiments. J. Biomech. 6:617–630.

    Article  PubMed  CAS  Google Scholar 

  • Pollack, G. H. 1970. Maximum velocity as an index of contractility in cardiac muscle. Circ. Res. 26:111–127.

    PubMed  CAS  Google Scholar 

  • Pollack, G. H., Huntsman, L. L., and Verdugo, P. 1972. Cardiac muscle models: an overextension of series elasticity? Circ. Res. 31:569–579.

    PubMed  CAS  Google Scholar 

  • Pollack, G. H., and Krueger, J. W. 1976. Sarcomere dynamics in intact cardiac muscle. Eur. J. Cardiol. 4 (Suppl):53–65.

    PubMed  Google Scholar 

  • Pouleur, H., Covell, J. W., and Ross, J. 1979. Effects of alterations in aortic input impedance on the force-velocity-length relationship in the intact canine heart. Circ. Res. 45:126–135.

    PubMed  CAS  Google Scholar 

  • Sauren, A. A. H. J., Kuijpers, W., van Steenhoven, A. A., and Veldpaus, F. E. 1980. Aortic valve histology and its relation with mechanics: preliminary report. J. Biomech. 13:97–104.

    Article  PubMed  CAS  Google Scholar 

  • Snuggs, T. A., and Aggarwal, J. K. 1975. Steady and unsteady flow in a semi-cylindrical hollow. Oxf. Univ. Eng. Sci. Lab. Rep. 1118/75.

    Google Scholar 

  • Sonnenblick, E. H. 1962. Force-velocity relations in mammalian heart muscle. Am. J. Physiol. 202:931.

    PubMed  CAS  Google Scholar 

  • Sonnenblick, E. H. 1965. Determinants of active state in heart muscle: force, velocity, instantaneous muscle length, time. Fed. Proc. 24:1396–1409.

    PubMed  CAS  Google Scholar 

  • Streeter, D. 1979. Gross morphology and fiber geometry of the heart. In Berne, R. M., Sperelakis, N. and Geiger, S. R., eds. Handbook of Physiology, Sec. 2 The Cardiovascular System, Vol. 1, Bethesda, Md.: American Physiological Society.

    Google Scholar 

  • Suga, H., Sagawa, K., and Demer, L. 1980. Determinants of instantaneous pressure in canine left ventricle. Circ. Res. 46:256–263.

    PubMed  CAS  Google Scholar 

  • Tarr, M., Trank, J. W., Goertz, K. K., and Leiffer, P. 1981. Effect of initial sarcomere length on sarcomere kinetics and force development in single frog atrial cardiac cells. Circ. Res. 49:767–774.

    PubMed  CAS  Google Scholar 

  • Tarr, M., Trank, J. W., Leiffer, P., and Shepherd, N. 1979. Sarcomere length-resting tension relation in single frog atrial cardiac cells. Circ. Res. 45:554–559.

    PubMed  CAS  Google Scholar 

  • Taylor, S. R., and Rudel, R. 1970. Striated muscle fibers: inactivation of contraction induced by shortening. Science 167:882–884.

    Article  PubMed  CAS  Google Scholar 

  • Torrent-Guasp, F. 1973. The Cardiac Muscle. Barcelona: The Juan March Foundation.

    Google Scholar 

  • van Steenhoven, A. A., and van Dongen, M. E. H. 1979. Model studies of the closing behavior of the aortic valve. J. Fluid Mech. 90(l):21–32.

    Article  Google Scholar 

  • Waldman, L. K. 1982. On the mechanical coupling of the heart to the circulation. Ph.D. Thesis, University of California, San Diego.

    Google Scholar 

  • Waldman, L. K., Fung, Y. C., and Covell, J. W. 1985. Transmural myocardial deformation in the canine left ventricle: normal in vivo three-dimensional finite strains. Circ. Res. 57:152–163.

    PubMed  CAS  Google Scholar 

  • Westerhof, N. 1982. Pressure-flow relations of arterial system and heart. In Huiskes, R., Van Campen, D. and De Wijn, J., eds. Biomechanics: Principles and Applications. The Hague: Martinus Nijhoff.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Waldman, L.K. (1987). Modeling of the Coupling of the Left Ventricle to the Peripheral Circulation. In: Yin, F.C.P. (eds) Ventricular/Vascular Coupling. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8634-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8634-6_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8636-0

  • Online ISBN: 978-1-4613-8634-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics