Skip to main content

Gamma-Aminobutyric and Glutamic Acids as Mammalian Central Transmitters

  • Chapter
Metabolic Compartmentation and Neurotransmission

Abstract

Following the initial discovery of gamma-aminobutyric acid (GABA) in central nervous tissue, the recognition of its metabolic relationship to glutamate, and observations of the effects of these amino acids and analogues on single neurons, there have been innumerable reviews concerned with the possible roles of GABA and glutamate as transmitters (see Curtis and Johnston, 1974α). Many claims both for and against such functions have not been fully supported by the currently available evidence, and, largely because of investigational difficulties, there are few synapses at which evidence of all types considered essential for transmitter identification is available. Transmitter function is frequently considered as probable on the basis of information that, in itself, might not be fully acceptable to the purist. The importance of these and other amino acids as central transmitters has been substantiated, however, as improvements in technical procedures, together with a better understanding of the complexities involved in establishing the nature of a central transmitter, continue to provide additional supporting evidence to confirm suspicions and convert the doubting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altmann, H., Bruggencate, G. Ten., Sonnhof, U., and Steinberg, R., 1973, Action of γ-aminobutyric acid and glycine on red nucleus neurons, Pflugers Arch. 342: 283–288.

    Article  Google Scholar 

  • Andersen, P., Eccles, J. C., Løyning, Y., and Voorhoeve, P. E., 1963, Strychnine-resistant inhibition in the brain, Nature (London) 200: 843–845.

    Article  Google Scholar 

  • Andersen, P., Eccles, J. C., Oshima, T., and Schmidt, R. F., 1964, Mechanisms of synaptic transmission in the cuneate nucleus, J. Neurophysiol. 27: 1096–1116.

    Google Scholar 

  • Andersen, P., Etholm, B., and Gordon, G., 1970, Presynaptic and post-synaptic inhibition elicited in the cat’s dorsal column nuclei by mechanical stimulation of skin, J. Physiol (London) 210: 433–455.

    Google Scholar 

  • Arregui, A., Logan, W. J., Bennett, J. P., and Snyder, S. H., 1972, Specific glycine-accumulating synaptosomes in the spinal cord of rats, Proc. Natl Acad. Set U.S.A. 69: 3485–3489.

    Article  Google Scholar 

  • Balcar, V. J., and Johnston, G. A. R., 1973, High affinity uptake of transmitters: Studies on the uptake of L-aspartate, GABA, L-glutamate and glycine in cat spinal cord, J. Neurochem. 20: 529–539.

    Article  Google Scholar 

  • Banna, N. R., 1973, Antagonistic effects of semicarbazide and pyridoxine on cuneate presynaptic inhibition, Brain Res. 56: 249–258.

    Article  Google Scholar 

  • Banna, N. R., and Jabbur, S. J., 1969, Pharmacological studies on inhibition in the cuneate nucleus of the cat Jnt. J. Neuropharmacol. 8: 299–307.

    Article  Google Scholar 

  • Banna, N. R., and Jabbur, S. J., 1971, The effects of depleting GABA on cuneate presynaptic inhibition, Brain Res. 33: 530–532.

    Article  Google Scholar 

  • Banna, N. R., Naccache, A., and Jabbur, S. J., 1972, Picrotoxin-like action of bicuculline, Eur. J. Pharmacol 17: 301–302.

    Article  Google Scholar 

  • Bell, J. A., and Anderson, E. G., 1972, The influence of semicarbazide-induced depletion of γ-amino-butyric acid on presynaptic inhibition, Brain Res. 43: 161–169.

    Article  Google Scholar 

  • Bennett, J. P., Jr., Logan, W. J., and Snyder, S. H., 1973, Amino acids as central nervous transmitters: The influence of ions, amino acid analogues, and ontogeny on transport systems for L-glutamate and L-aspartic acids and glycine into central nervous synaptosomes of the rat, J. Neurochem. 21: 1533–1550.

    Article  Google Scholar 

  • Benoist, J. M., Besson, J. M., and Boissier, J. R., 1974, Modifications of presynaptic inhibition of various origins by local application of convulsant drugs on cat’s spinal cord, Brain Res. 71: 172–177.

    Article  Google Scholar 

  • Biscoe, T. J., and Curtis, D. R., 1967, Strychnine and cortical inhibition, Nature (London) 214: 914–915.

    Article  Google Scholar 

  • Biscoe, T. J., and Straughan, D. W., 1966, Micro-electrophoretic studies of neurones in the cat hippocampus, J. Physiol (London) 183: 341–359.

    Google Scholar 

  • Biscoe, T. J., Duggan, A. W., and Lodge, D., 1972, Antagonism between bicuculline, strychnine and picrotoxin and depressant amino acids in the rat central nervous system, Comp. Gen. Pharmacol 3: 423–433.

    Article  Google Scholar 

  • Bisti, S., Iosif, G., Marchesi, G. F., and Strata, P., 1971, Pharmacological properties of inhibitions in the cerebellar cortex, Exp. Brain Res. 14: 24–37.

    Article  Google Scholar 

  • Boakes, R. J., Bradley, P. B., Briggs, I., and Dray, A., 1970, Antagonism of 5-hydroxytryptamine by LSD 25 in the central nervous system: A possible neuronal basis for the actions of LSD 25, Br. J. Pharmacol 40: 202–218.

    Google Scholar 

  • Bowery, N. G., and Brown, D. A., 1972, γ-Aminobutyric acid uptake by sympathetic ganglia, Nature (London) New Biol 238: 89–91.

    Article  Google Scholar 

  • Boyd, E. S., Meritt, D. A., and Gardner, C., 1966, The effect of convulsant drugs on transmission through the cuneate nucleus, J. Pharmacol Exp. Ther. 154: 398–409.

    Google Scholar 

  • Bradford, H. F., Bennett, G. W., and Thomas, A. J., 1973, Depolarizing stimuli and the release of physiologically active amino acids from suspensions of mammalian synaptosomes, J. Neurochem. 21: 495–505.

    Article  Google Scholar 

  • Brodal, A., Pompeiano, O., and Walberg, A., 1962, “The Vestibular Nuclei and their Connections. Anatomy and Functional Correlations,” Oliver & Boyd, Edinburgh.

    Google Scholar 

  • Bruggencate, G. Ten., and Engberg, I., 1971, Iontophoretic studies in Deiters’ nucleus of the inhibitory actions of GABA and related amino acids and the interactions of strychnine and picrotoxin, Brain Res. 25: 431–448.

    Article  Google Scholar 

  • Bruun, A., Ehinger, B., and Forsberg, A., 1974, In vitro uptake of β-alanine into rabbit retinal neurons, Exp. Brain Res. 19: 239–247.

    Article  Google Scholar 

  • Christensen, H. N., 1970, Linked ion and amino acid transport, in “Membrane and Ion Transport,” Vol. 1 (H. H. Bittar, ed.), pp. 365–394, Wiley-Interscience, London and New York.

    Google Scholar 

  • Christensen, H. N., 1972, Nature and role of receptor sites for amino acid transport, in “Role of Vitamin B6 in Neurobiology,” Vol. 4, “Advances in Biochemical Psychopharmacology” (M. S. Ebadi, and E. Costa, eds.), pp. 39–60, Raven Press, New York.

    Google Scholar 

  • Cohen, S. R., and Lajtha, A., 1972, Amino acid transport, in “Handbook of Neurochemistry,” Vol. VII, “Pathological Chemistry of the Nervous System” (A. Lajtha, ed.), pp. 429–464, Plenum Press, New York.

    Google Scholar 

  • Conradi, A., 1969, Ultrastructure and distribution of neuronal and glial elements on the motoneuron surface in the lumbosacral spinal cord of the adult cat, Acta Physiol Scand. Suppl. 332: 5–48.

    Google Scholar 

  • Cotman, C. W., 1972, Principles for the optimization of centrifugation conditions for fractionation of brain tissue, in “Research Methods in Neurochemistry,” Vol. 1 ( N. Marks, and R. Rodnight, ed.), pp. 45–93, Plenum Press, New York.

    Google Scholar 

  • Crawford, J. L., and Connor, J. D., 1973, Localization and release of glutamic acid in relation to the hippocampal mossy fibre pathway, Nature (London) 244: 442–443.

    Article  Google Scholar 

  • Crawford, J. M., Curtis, D. R., Voorhoeve, P. E., and Wilson, V. J., 1963, Strychnine and cortical inhibition, Nature (London) 200: 845–846.

    Article  Google Scholar 

  • Crossman, A. R., Walker, R. J., and Woodruff, G. N., 1973, Picrotoxin antagonism of γ-aminobutyric acid inhibitory response and synaptic inhibition in the rat substantia nigra, Br. J. Pharmacol 49: 696–698.

    Google Scholar 

  • Csillik, B., Gerebtzoff, A. M., Kiss, J., and Knyihar, E., 1971, Zur Histochemie der limbischen Hemmung. Zytochemische und autoradiographische Untersuchungen über die Lokalisation dei Enzyme des Gamma-amino-Buttersäure-Stoffwechsels im Hippocampus der Ratte, Histochemie 28: 38–54.

    Article  Google Scholar 

  • Curtis, D. R., and Crawford, J. M., 1969, Central synaptic transmission-Microelectrophoretic studies, Annu. Rev. Pharmacol 9: 209–240.

    Article  Google Scholar 

  • Curtis, D. R., and de Groat, W. C., 1968, Tetanus toxin and spinal inhibition, Brain Res. 10: 208–212.

    Article  Google Scholar 

  • Curtis, D. R., and Felix, D., 1971, The effect of bicuculline upon synaptic inhibition in the cerebral and cerebellar cortices of the cat, Brain Res. 34: 301–321.

    Article  Google Scholar 

  • Curtis, D. R., and Johnston, G. A. R., 1974a, Amino acid transmitters in the mammalian central nervous system, Ergeb. Physiol Biol Chem. Exp. Pharmakol. 69: 98–188.

    Google Scholar 

  • Curtis, D. R., and Johnston, G. A. R., 1974b, Convulsant alkaloids, in “Neuropoisons,” Vol. 2 (L. L. Simpson and D. R. Curtis, eds.), pp. 000–000, Plenum Press, New York.

    Google Scholar 

  • Curtis, D. R., and Tebecis, A. K., 1972, Bicuculline and thalamic inhibition, Exp. Brain Res. 16: 210–218.

    Article  Google Scholar 

  • Curtis, D. R., Phillis, J. W., and Watkins, J. C., 1960, The chemical excitation of spinal neurones by certain acidic amino acids, J. Physiol (London) 150: 656–682.

    Google Scholar 

  • Curtis, D. R., Hösli, L., and Johnston, G. A. R., 1968a, A pharmacological study of the depression of spinal neurones by glycine and related amino acids, Exp. Brain Res. 6: 1–18.

    Article  Google Scholar 

  • Curtis, D. R., Hösli, L., Johnston, G. A. R., and Johnston, I. H., 19686, The hyperpolarization of spinal motoneurones by glycine and related amino acids, Exp. Brain Res. 5: 235–258.

    Article  Google Scholar 

  • Curtis, D. R., Duggan, A. W., and Felix, D., 1970c, GABA and- inhibition of Deiters’ neurones, Brain Res. 23: 117–120.

    Article  Google Scholar 

  • Curtis, D. R., Felix, D., and McLennan, H., 1970b, GABA and hippocampal inhibition, Br. J., Pharmacol 40: 881–883.

    Google Scholar 

  • Curtis, D. R., Duggan, A. W., Felix, D., and Johnston, G. A. R., 1971a, Bicuculline, an antagonist of GABA and synaptic inhibition in the spinal cord, Brain Res. 32: 69–96.

    Article  Google Scholar 

  • Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R., and McLennan, H., 19716, Antagonism between bicuculline and GABA in the cat brain, Brain Res. 33: 57–73.

    Article  Google Scholar 

  • Curtis, D. R., Duggan, A. W., and Johnston, G. A. R., 1971c, The specificity of strychnine as a glycine antagonist in the mammalian spinal cord, Exp. Brain Res. 12: 547–565.

    Article  Google Scholar 

  • Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R., Tebecis, A. K., and Watkins, J. C., 1972, Excitation of mammalian central neurones by acidic amino acids, Brain Res. 41: 283–301.

    Article  Google Scholar 

  • Curtis, D. R., Felix, D., Game, C. J. A., and McCulloch, R. M., 1973a, Tetanus toxin and the synaptic release of GABA, Brain Res. 51: 358–362.

    Article  Google Scholar 

  • Curtis, D. R., Johnston, G. A. R., Game, C. J. A., and McCulloch, R. M., 1973b, Antagonism of neuronal excitation by l-hydroxy-3-aminopyrrolidone-2, Brain Res. 49: 467–470.

    Google Scholar 

  • Danscher, G., Haug, F. -M. and Fredens, K., 1973, Effect of diethyldithiocarbamate (DEDTC) on sulphide silver stained boutons. Reversible blocking of Timm’s sulphide silver stain for “heavy” metals in DEDTC treated rats (light microscopy), Exp. Brain Res. 16: 521–532.

    Article  Google Scholar 

  • Davidoff, R. A., 1972, Penicillin and inhibition in the cat spinal cord, Brain Res. 45: 638–642.

    Article  Google Scholar 

  • Davidoff, R. A., Graham, L. T., Jr., Shank, R. P., Werman, R., and Aprison, M. H., 1967, Changes in amino acid concentrations associated with loss of spinal interneurons, J. Neurochem. 14: 1025–1031.

    Article  Google Scholar 

  • Davidson, N., and Reisine, H., 1971, Presynaptic inhibition in cuneate blocked by GABA antagonists, Nature (London) New Biol. 234: 223–224.

    Article  Google Scholar 

  • Davidson, N., and Southwick, C. A. P., 1971, Amino acids and presynaptic inhibition in the rat cuneate nucleus, J. Physiol. (London) 219: 689–708.

    Google Scholar 

  • Davies, J., and Johnston, G. A. R., 1974, The uptake of GABA into rat spinal roots, J. Neurochem., 22: 931–935.

    Article  Google Scholar 

  • Davies, J., and Watkins, J. C., 1973a, Microelectrophoretic studies on the depressant action of HA-966 on chemically and synaptically-excited neurones in the cat cerebral cortex and cuneate nucleus, Brain Res. 59: 311–322.

    Google Scholar 

  • Davies, J., and Watkins, J. C., 1973b, Antagonism of synaptic and amino acid induced excitation in the cuneate nucleus of the cat by HA-966, Neuropharmacology 12: 637–640.

    Google Scholar 

  • De Belleroche, J. S., and Bradford, H. F., 1973c, Amino acids in synaptic vesicles from mammalian cerebral cortex: A reappraisal, J. Neurochem. 21: 441–451.

    Article  Google Scholar 

  • De Belleroche, J. S., and Bradford, H. F., 1973ft, The synaptosome: An isolated, working, neuronal compartment, Prog. Neurobiol. 1: 275–298.

    Google Scholar 

  • de Groat, W. C., 1970, The effects of glycine, GABA and strychnine on sacral parasympathetic preganglionic neurones, Brain Res. 18: 542–544.

    Article  Google Scholar 

  • De Robertis, E., 1968, Isolation of inhibitory nerve endings from brain, in “Structure and Function of Inhibitory Neuronal Mechanisms,” Vol. 10 (C. von Euler, S. Skoglund, and U. Soderberg, eds.), pp. 511–522, Pergamon Press, London.

    Google Scholar 

  • Dreifuss, J. J., Kelly, J. S., and Krnjević, K., 1969, Cortical inhibition and γ-aminobutyric acid, Exp. Brain Res. 9: 137–154.

    Article  Google Scholar 

  • Duggan, A. W., 1974, The differential sensitivity to L-glutamate and L-aspartate of spinal inter- neurones and Renshaw cells, Exp. Brain Res. 19: 522–528.

    Article  Google Scholar 

  • Duggan, A. W., and McLennan, H., 1971, Bicuculline and inhibition in the thalamus, Brain Res. 25: 188–191.

    Article  Google Scholar 

  • Duggan, A. W., Lodge, D., Biscoe, T. J., and Headley, P. M., 1973, Effect of nuciferine on the chemical excitation of Renshaw cells in the rat, Arch. Int. Pharmacodyn. Ther. 204: 147–149.

    Google Scholar 

  • Eccles, J. C., Schmidt, R. F., and Willis, W. D., 1963, Pharmacological studies on presynaptic inhibition, Physiol. (London) 168: 500–530.

    Google Scholar 

  • Eccles, J. C., Ito, M., and Szentdgothai, J., 1967, “The Cerebellum as a Neuronal Machine,” Springer-Verlag, New York.

    Google Scholar 

  • Ehinger, B., 1972, Cellular location of the uptake of some amino acids into the rabbit retina, Brain Res. 46: 297–311.

    Article  Google Scholar 

  • Fedinec, A. A., and Shank, R. P., 1971, Effect of tetanus toxin on the content of glycine, gamma-aminobutyric acid, glutamate, glutamine and aspartate in the rat spinal cord, J. Neurochem 18: 2229–2234.

    Article  Google Scholar 

  • Felix, D., and McLennan, H., 1971, The effect of bicuculline on the inhibition of mitral cells of the olfactory bulb, Brain Res. 25: 661–664.

    Article  Google Scholar 

  • Feltz, P., 1971, γ-Aminobutyric acid and a caudato-nigral inhibition, Can. J. Physiol. Pharmacol. 49: 1114–1115.

    Google Scholar 

  • Fonnum, F., 1972, Localization of cholinergic and γ-aminobutyric acid containing pathways in brain, in “Metabolic Compartmentation in the Brain” (R. Balázs, and J. Cremer, eds.), pp. 243–255, Macmillan, London.

    Google Scholar 

  • Fonnum, F., and Walberg, F., 1973, An estimation of the concentration of γ-aminobutyric acid and glutamate decarboxylase in the inhibitory Purkinje axon terminals in the cat, Brain Res. 54: 115–127.

    Article  Google Scholar 

  • Fonnum, F., Storm-Mathisen, J., and Walberg, F., 1970, Glutamate decarboxylase in inhibitory neurons. A study of the enzyme in Purkinje cell axons and boutons in the cat, Brain Res. 20: 259–275.

    Article  Google Scholar 

  • Fonnum, F., Grofova, I., Rinvik, E., Storm-Mathisen, J., and Walberg, F., 1974, Origin and distribution of glutamate decarboxylase in substantia nigra of the cat, Brain Res. 71: 77–92.

    Article  Google Scholar 

  • Fukuda, J., Highstein, S. M., and Ito, M., 1972, Cerebellar inhibitory control of the vestibulo-ocular reflex investigated in rabbit IIIrd nucleus, Exp. Brain Res. 14: 511–526.

    Article  Google Scholar 

  • Galindo, A., 1969, GABA-picrotoxin interaction in the mammalian central nervous system, Brain Res. 14: 763–767.

    Article  Google Scholar 

  • Galindo, A., Krnjević, K., and Schwartz, S., 1967, Microiontophoretic studies on neurones in the cuneate nucleus, J. Physiol. (London) 192: 359–377.

    Google Scholar 

  • Godfraind, J. M., Krnjević, K., Maretic, H., and Pumain, R., 1973, Inhibition of cortical neurones by imidazole and some derivatives, Can. J. Physiol 51: 790–797.

    Article  Google Scholar 

  • Graham, L. T., Jr., 1972, Intraretinal distribution of GABA content and GAD activity, Brain Res. 36: 476–479.

    Article  Google Scholar 

  • Graham, L. T., Jr., 1973, Distribution of glutamic acid decarboxylase activity and GABA content in the olfactory bulb, Life Sci. 12 (1): 443–447.

    Article  Google Scholar 

  • Graham, L. T., Jr., Shank, R. P., Werman, R., and Aprison, M. H., 1967, Distribution of some synaptic transmitter suspects in cat spinal cord: Glutamic acid, aspartic acid, γ-aminobutyric acid, glycine and glutamine, J. Neurochem. 14: 465–472.

    Article  Google Scholar 

  • Haldeman, S., and McLennan, H., 1972, The antagonistic action of glutamic acid diethylester towards amino acid-induced and synaptic excitations of central neurones, Brain Res. 45: 393–400.

    Article  Google Scholar 

  • Haldeman, S., Huffman, R. D., Marshall, K. C., and McLennan, H., 1972, The antagonism of the glutamate-induced and synaptic excitation of thalamic neurones, Brain Res. 39: 419–425.

    Article  Google Scholar 

  • Hammerstad, J. P., and Cutler, R. W. P., 1972, Sodium ion movements and the spontaneous and electrically stimulated release of [3H]GABA and [14 C] glutamic acid from rat cortical slices, Brain Res. 47: 401–413.

    Article  Google Scholar 

  • Hammerstad, J. P., Murray, J. E., and Cutler, R. W. P., 1971, Efflux of amino acid neurotransmitters from rat spinal cord slices. II. Factors influencing the electrically induced efflux of [14 C] glycine and [3H] GABA, Brain Res. 35: 357–367.

    Article  Google Scholar 

  • Henn, F. A., and Hamberger, A., 1971, Glial cell function: Uptake of transmitter substances, Proc. Natl. Acad. Sci. U.S.A. 68: 2686–2690.

    Article  Google Scholar 

  • Herz, A., and Gogolak, G., 1965, Mikroelektrophoretische Untersuchungen am Septem des Kaninchens, Pfluegers Arch. 285: 317–330.

    Article  Google Scholar 

  • Highstein, S. M., 1973a, The organization of the vestibooculomotor and trochlear reflex pathways in the rabbit, Exp. Brain Res. 17: 285–300.

    Google Scholar 

  • Highstein, S. M., 1973b, Synaptic linkage in the vestibuloocular and cerebello-vestibular pathways to the VIth nucleus in the rabbit, Exp. Brain Res. 17: 301–314.

    Google Scholar 

  • Highstein, S. M., Ito, M., and Tsuchiya, T., 1971, Synaptic linkage in the vestibulo-ocular reflex pathway of rabbit, Exp. Brain Res. 13: 306–326.

    Article  Google Scholar 

  • Hill, R. G., and Simmonds, M. A., 1973, A method for comparing the potencies of γ-aminobutyric acid antagonists on single cortical neurones using micro-iontophoretic techniques, Br. J. Pharmacol 48: 1–11.

    Google Scholar 

  • Hill, R. G., Simmonds, M. A., and Straughan, D. W., 1972, Antagonism of GABA by picrotoxin in the feline cerebral cortex, Br. J. Pharmacol 44: 807–809.

    Google Scholar 

  • Hockman, C. H., Lloyd, K. G., Farley, I. J., and Hornykiewicz, O., 1971, Experimental midbrain lesions: Neurochemical comparison between the animal model and Parkinson’s disease, Brain Res. 35: 613–618.

    Article  Google Scholar 

  • Hökfelt, T., and Ljungdahl, Å., 1972a, Autoradiographic identification of cerebral and cerebellar cortical neurons accumulating labeled gamma-aminobutyric acid (3H-GABA), Exp. Brain Res. 14: 354–362.

    Google Scholar 

  • Hökfelt, T., and Ljungdahl, Å., 1972a, Application of cytochemical techniques to the study of suspected transmitter substances in the nervous system, Adv. Biochem. Psychopharmacol. 6: 1–36.

    Google Scholar 

  • Hösli, L., Andres, P. F., and Hösli, E., 1973, Ionic mechanisms underlying the depolarization of L-glutamate on rat and human spinal neurones in tissue culture, Experientia 29: 1244–1247.

    Article  Google Scholar 

  • Hu, K. H., and Friede, R. L., 1968, Topographic determination of zinc in human brain by atomic absorption spectrophotometry, J. Neurochem. 15: 677–685.

    Article  Google Scholar 

  • Hutchison, H. T., Werrbach, K., Vance, C., and Haber, B., 1974, Uptake of neurotransmitters by clonal lines of astrocytoma and neuroblastoma in culture. I. Transport of γ-aminobutyric acid, Brain Res. 66: 265–274.

    Article  Google Scholar 

  • Hyde, J. C., and Robinson, N., 1974, Localisation of sites of GAB A catabolism in the rat retina, Nature (London) 248: 432–433.

    Article  Google Scholar 

  • Ibata, Y., and Otsuka, N., 1969, Electron microscopic demonstration of zinc in the hippocampal formation using Timm’s sulphide-silver technique, J. Histochem. Cytochem. 17: 171–175.

    Article  Google Scholar 

  • Ito, M., and Yoshida, M., 1966, The origin of cerebellar-induced inhibition of Deiters neurones. I. Monosynaptic initiation of the inhibitory postsynaptic potentials, Exp. Brain Res. 2: 330–349.

    Google Scholar 

  • Iversen, L. L., and Bloom, F. E., 1972, Studies of the uptake of 3 H-GABA and [3 H] glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography, Brain Res. 41: 131–143.

    Article  Google Scholar 

  • Iversen, L. L., and Johnston, G. A. R., 1971, GAB A uptake in rat central nervous system: Comparison of uptake in slices and homogenates and the effects of some inhibitors, J. Neurochem. 18: 1939–1950.

    Article  Google Scholar 

  • Iversen, L. L., Mitchell, J. F., and Srinivasan, V., 1971, The release of γ-aminobutyric acid during inhibition in the cat visual cortex, J. Physiol (London) 212: 519–534.

    Google Scholar 

  • Iversen, L. L., Kelly, J. S., Minchin, M., Schon, F., and Snodgrass, S. R., 1973, Role of amino acids and peptides in synaptic transmission, Brain Res. 62: 567–576.

    Article  Google Scholar 

  • Johnson, E. S., Roberts, M. H. T., and Straughan, D. W., 1970, Amino-acid-induced depression of cortical neurones, Br. J. Pharmacol. 38: 659–666.

    Google Scholar 

  • Johnson, J. L., 1973, An analysis of the compartmentation and proximo-distal convection of the glutamate—glutamine system in the dorsal sensory neuron: Comparison with the motoneuron and cerebral cortex, Brain Res. 67: 489–502.

    Article  Google Scholar 

  • Johnson, J. L., 1974, Glutamine in the dorsal sensory neuron, Brain Res. 69: 366–369.

    Article  Google Scholar 

  • Johnston, G. A. R., and Balcar, V. J., 1974, Amino-oxy ace tic acid: A relatively non-specific inhibitor of uptake of amino acids and amines by brain and spinal cord, J. Neurochem. 22: 609–610.

    Article  Google Scholar 

  • Johnston, G. A. R., de Groat, W. C., and Curtis, D. R., 1969, Tetanus toxin and amino acid levels in cat spinal cord, J. Neurochem. 16: 797–800.

    Google Scholar 

  • Jones, I. M., Jordan, C. C., Morton, I. K. M., Stagg, C. J., and Webster, R. A., 1972, Chronic dorsal root section on free amino acid levels in the rabbit spinal cord, Br. J. Pharmacol. 47: 668–669 P.

    Google Scholar 

  • Kanazawa, I., Miyata, Y., Toyokura, Y., and Otsuka, M., 1973, The distribution of γ-aminobutyric acid (GABA) in the human substantia nigra, Brain Res. 51: 363–365.

    Article  Google Scholar 

  • Katoaka, K., Bak, I. J., Hassler, R., Kim, J. S., and Wagner, A., 1974, L-Glutamate decarboxylase and choline acetyltransferase activity in the substantia nigra and the striatum after surgical interruption of the strio-nigral fibres of the baboon, Exp. Brain Res. 19: 217–227.

    Google Scholar 

  • Kawaguchi, S., and Ono, T., 1973, Bicuculline and picrotoxin sensitive inhibition in interpositus neurones of cat, Brain Res. 58: 260–265.

    Article  Google Scholar 

  • Kawamura, H., and Provini, L., 1970, Depression of cerebellar Purkinje cells by microiontophoretic application of GABA and related amino acids, Brain Res. 24: 293–304.

    Article  Google Scholar 

  • Kellerth, J. -O., and Szumski, A. J., 1966, Effects of picrotoxin on stretch-activated postsynaptic inhibitions in spinal motoneurones, Acta Physiol. Scand. 66: 146–156.

    Article  Google Scholar 

  • Kelly, J. S., and Renaud, L. P., 1973a. On the pharmacology of γ-aminobutyric acid receptors on the cuneo-thalamic relay cells of the cat, Br. J. Pharmacol. 48: 369–386.

    Google Scholar 

  • Kelly, J. S., and Renaud, L. P., 1973b, On the pharmacology of ascending, descending and recurrent postsynaptic inhibition of the cuneo-thalamic relay cells in the cat, Br. J. Pharmacol. 48: 396–408.

    Google Scholar 

  • Kelly, J. S., Krnjević, K., Morris, M. E., and Yim, G. K. W., 1969, Anionic permeability of cortical neurones, Exp. Brain Res. 7: 11–31.

    Article  Google Scholar 

  • Kelly, J. S., Gottesfeld, Z., and Schon, F., 1973, Reduction in GAD I activity from the dorsal lateral region of the deafferented rat spinal cord, Brain Res. 62: 581–586.

    Article  Google Scholar 

  • Kim, J. S., Bak, I. J., Hassler, R., and Okada, Y., 1971, Role of γ-aminobutyric acid (GABA) in the extrapyramidal motor system. 2. Evidence for the existence of type of GABA-rich strio-nigral neurons, Exp. Brain Res. 14: 95–104.

    Article  Google Scholar 

  • King, J. S., Dom, R. M., and Martin, G. F., 1974, Anatomical evidence for an intrinsic neuron in the red nucleus, Brain Res. 67: 317–323.

    Article  Google Scholar 

  • Koyama, I., and Jasper, H. H., 1972, The release of GABA from cerebral cortex in the cat, Proc. Can. Fed. Biol Soc. 15:(Abstr.)315.

    Google Scholar 

  • Krnjević, K., 1971, Microiontophoresis, in “Methods of Neurochemistry,” Vol. 1 (R. Fried, ed.), pp. 129–172, Marcel Dekker, New York.

    Google Scholar 

  • Krnjević, K., and Schwartz, S., 1967a, Some properties of unresponsive cells in the cerebral cortex, Exp. Brain Res. 3: 306–319.

    Article  Google Scholar 

  • Krnjević, K., and Schwartz, S., 1967ft, The action of 7-aminobutyric acid on cortical neurones, Exp. Brain Res. 3: 320–336.

    Google Scholar 

  • Krnjević, K., and Whittaker, V. P., 1965, Excitation and depression of cortical neurones by brain fractions released from micro pipettes, J. Physiol. (London) 179: 298–322.

    Google Scholar 

  • Krnjević, K., Randić, M., and Straughan, D. W., 1966, Pharmacology of cortical inhibition, J. Physiol. (London) 184: 78–105.

    Google Scholar 

  • Larson, M. D., 1969, An analysis of the action of strychnine on the recurrent IPSP and amino acid induced inhibitions in the cat spinal cord, Brain Res. 15: 185–200.

    Article  Google Scholar 

  • Lasher, R. S., 1974, The uptake of [3H]GABA and differentiation of stellate neurons in cultures of dissociated postnatal rat cerebellum, Brain Res. 69: 235–254.

    Article  Google Scholar 

  • Legge, K. F., Randi£, M., and Straughan, D. W., 1966, The pharmacology of neurones in the pyriform cortex, Br. J. Pharmacol. 26: 87–107.

    Google Scholar 

  • Levi, G., Bertollini, A., Chen, J., and Raiteri, M., 1974, Regional differences in the synaptosomal uptake of 3 H-γ-aminobutyric acid and 14C-glutamate and possible role of exchange processes, J. Pharmacol. Exp. Ther. 188: 429–438.

    Google Scholar 

  • Levy, R. A., and Anderson, E. G., 1972, The effect of the GABA antagonists bicuculline and picrotoxin on primary afferent terminal excitability, Brain Res. 43: 171–180.

    Article  Google Scholar 

  • Levy, W. B., Redburn, D. A., and Cotman, C. W., 1973, Stimulus-coupled secretion of γ-aminobutyric acid from rat brain synaptosomes, Science, N. Y. 181: 676–678.

    Article  Google Scholar 

  • Ljungdahl, Å., and Hökflet, T., 1973, Autoradiographic uptake patterns of [3H]GABA and [3H] glycine in central nervous tissues with special reference to the cat spinal cord, Brain Res. 62: 587–595.

    Article  Google Scholar 

  • Ljungdahl, Å., Seiger, Å., Hökfelt, T., and Olson, L., 1973, [3H]GABA uptake in growing cerebellar tissue: Autoradiography of intraocular transplants, Brain Res. 61: 379–384.

    Google Scholar 

  • McCulloch, R. M., Johnston, G. A. R., Game, C. J. A., and Curtis, D. R., 1975, The differential sensitivity of spinal interneurones and Renshaw cells to kainate and N-methyl-D-aspartate, Exp. Brain Res., in press.

    Google Scholar 

  • McLaughlin, B. J., 1972, The fine structure of neurons and synapses in the motor nuclei of the cat spinal cord, J. Comp. Neurol. 144: 429–460.

    Article  Google Scholar 

  • McLaughlin, B. J., Wood, J. G., Saito, K., Barber, R., Vaughn, J. E., Roberts, E., and Wu, J. -Y., 1974, The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum, Brain Res. 76: 377–391.

    Article  Google Scholar 

  • McLennan, H., 1971, The pharmacology of inhibition of mitral cells in the olfactory bulb, Brain Res. 29: 177–184.

    Article  Google Scholar 

  • McLennan, H., and Miller, J. J., 1974, γ-Aminobutyric acid and inhibition in the septal nuclei of the rat, J. Physiol. (London) 237: 625–633.

    Google Scholar 

  • McLennan, H., Huffman, R. D., and Marshall, K. C., 1968, Patterns of excitation of thalamic neurones by amino-acids and by acetylcholine, Nature (London) 219: 387–388.

    Article  Google Scholar 

  • Marin-Padilla, M., 1972, Double origin of the pericellular baskets of the pyramidal cells of the human motor cortex: A Golgi study, Brain Res. 38: 1–12.

    Article  Google Scholar 

  • Miyata, Y., and Otsuka, M., 1972, Distribution of γ-aminobutyric acid in cat spinal cord and the alteration produced by local ischaemia, J. Neurochem. 19: 1833–1834.

    Article  Google Scholar 

  • Miyata, Y., Obata, K., Tanaka, Y., and Otsuka, M., 1970, Determination of γ-aminobutyric acid in isolated nerve cells of the brain stem of the cat, J. Physiol. Soc. Jpn. 32: 377–378.

    Google Scholar 

  • Mugnaini, E., and Walberg, F., 1967, An experimental electron microscopical study on the mode of termination of cerebellar cortico-vestibular fibres in the cat lateral vestibular nucleus (Deiters’ nucleus), Exp. Brain Res. 4: 212 — 236.

    Google Scholar 

  • Mulder, A. H., and Snyder, S. H., 1974, Potassium-induced release of amino acids from cerebral cortex and spinal cord slices of the rat, Brain Res. 76: 297–308.

    Article  Google Scholar 

  • Neal, M. J., and Iversen, L. L., 1969, Subcellular distribution of endogenous and 3H-GABA in rat cerebral cortex, J. Neurochem. 16: 1245–1252.

    Article  Google Scholar 

  • Neal, M. J., and Iversen, L. L., 1972, Autoradiographic localization of 3H-GABA in rat retina, Nature (London) New Biol 235: 217–218.

    Article  Google Scholar 

  • Nicoll, R. A., 1971, Pharmacological evidence for GAB A as the transmitter in granule cell inhibition in the olfactory bulb, Brain Res. 35: 137–149.

    Article  Google Scholar 

  • Noell, W. K., 1959, The visual cell: Electric and metabolic manifestations of its life processes, Am. J. Ophthalmol. 48: 347–370.

    Google Scholar 

  • Obata, K., 1972, The inhibitory action of γ-aminobutyric acid, a probable synaptic transmitter, Int. Rev. Neurobiol. 15: 167–187.

    Article  Google Scholar 

  • Obata, K., and Highstein, S. M., 1970, Blocking by picrotoxin of both vestibular inhibition and GABA action on rabbit oculomotor neurones, Brain Res. 18: 538–541.

    Article  Google Scholar 

  • Obata, K., and Takeda, K., 1969, Release of γ-aminobutyric acid into the fourth ventricle induced by stimulation of the cat’s cerebellum, J. Neurochem. 16: 1043–1047.

    Article  Google Scholar 

  • Obata, K., and Yoshida, M., 1973, Caudate-evoked inhibition and actions of GABA and other substances on cat pallidal neurons, Brain Res. 64: 455–459.

    Article  Google Scholar 

  • Obata, K., Ito, M., Ochi, R., and Sato, N., 1967, Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of γ-aminobutyric acid on Deiters neurones, Exp. Brain Res. 4: 43–57.

    Article  Google Scholar 

  • Obata, K., Takeda, K., and Shinozaki, H., 1970, Further study on pharmacological properties of the cerebellar-induced inhibition of Deiters neurones, Exp. Brain Res. 11: 327–342.

    Google Scholar 

  • Okada, Y., and Hassler, R., 1973, Uptake and release of γ-aminobutyric acid (GABA) in slices of substantia nigra of rat, Brain Res. 49: 214–217.

    Article  Google Scholar 

  • Osborne, R. H., Bradford, H. F., and Jones, D. G., 1973, Patterns of amino acid release from nerve-endings isolated from spinal cord and medulla, J. Neurochem. 21: 407–419.

    Article  Google Scholar 

  • Otsuka, M., and Miyata, Y., 1972, Application of enzymatic cycling to the measurement of gamma-aminobutyric acid in single neurons of the mammalian central nervous system, Adv. Biochem. Psychopharmacol. 6: 61–74.

    Google Scholar 

  • Otsuka, M., Obata, K., Miyata, Y., and Tanaka, Y., 1971, Measurement of γ-aminobutyric acid in isolated nerve cells of cat central nervous system, J. Neurochem. 18: 287–295.

    Article  Google Scholar 

  • Pettigrew, J. D., and Daniels, J. D., 1973, Gamma-aminobutyric acid antagonism in visual cortex: Different effects on single, complex, and hypercomplex neurons, Science, N. Y. 182: 81–83.

    Article  Google Scholar 

  • Precht, W., and Baker, R., 1972, Synaptic organization of the vestibulo-trochlear pathway, Exp. Brain Res. 14: 158–184.

    Article  Google Scholar 

  • Precht, W., and Yoshida, M., 1971, Blockage of caudate-evoked inhibition of neurons in the substantia nigra by picrotoxin, Brain Res. 32: 229–233.

    Article  Google Scholar 

  • Precht, W., Baker, R., and Okada, Y., 1973a Evidence for GAB A as the synaptic transmitter of the inhibitory vestibulo-ocular pathway, Exp. Brain Res. 18: 415–428.

    Article  Google Scholar 

  • Precht, W., Schwindt, P. C., and Baker, R., 1973b, Removal of vestibular commissural inhibition by antagonists of GABA and glycine, Brain Res. 62: 222–226.

    Article  Google Scholar 

  • Roberts, E., and Frankel, S., 1950, γ-Aminobutyric acid in brain. Its formation from glutamic acid, J. Biol. Chem. 187: 55–63.

    Google Scholar 

  • Roberts, P. J., 1973, The release of amino acids with proposed neurotransmitter function from the cuneate and gracile nuclei of the rat in vivo, Brain Res. 67: 419–428.

    Article  Google Scholar 

  • Roberts, P. J., and Keen, P., 1973, Uptake of [14C] glutamate into dorsal and ventral roots of spinal nerves of the rat, Brain Res. 57: 234–238.

    Article  Google Scholar 

  • Roberts, P. J., and Keen, P., 1974a. High-affinity uptake system for glutamine in rat dorsal roots but not in nerve-endings, Brain Res. 67: 352–357.

    Article  Google Scholar 

  • Roberts, P. J., and Keen, P., 1974b, Effect of dorsal root section on amino acids of rat spinal cord, Brain Res. 74: 333–337.

    Article  Google Scholar 

  • Roberts, P. J., Keen, P., and Mitchell, J. F., 1973, The distribution and axonal transport of free amino acids and related compounds in the dorsal sensory neuron of the rat, as determined by the dansyl reaction, J. Neurochem 21: 199–209.

    Article  Google Scholar 

  • Robinson, N., and Wells, E., 1973, Distribution and localization of sites of gamma aminobutyric acid metabolism in the adult rat brain, J. Anat. 114: 365–378.

    Google Scholar 

  • Rose, D., and Blakemore, C., 1974, Effects of bicuculline on functions of inhibition in visual cortex, Nature (London) 249: 375–377.

    Article  Google Scholar 

  • Saito, K., Barber, R., Wu, J.-Y., Matsuda, T., Roberts, E., and Vaughn, J. E., 1974, Immunohisto-chemical localization of glutamate decarboxylase in rat cerebellum, Proc. Natl Acad. Sci. U.S.A. 71: 269–273.

    Article  Google Scholar 

  • Schmidt, R. F., 1971, Presynaptic inhibition in the vertebrate central nervous system, Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 63: 20–101.

    Google Scholar 

  • Schon, F., and Iversen, L. L., 1972, Selective accumulation of [3H]GABA by stellate cells in rat cerebellar in vivo, Brain Res. 42: 503–507.

    Article  Google Scholar 

  • Schon, F., and Kelly, J. S., 1974a, Autoradiographic localisation of [3H]GABA and [3H]glutamate over satellite glial cells, Brain Res. 66: 275–288.

    Article  Google Scholar 

  • Schon, F., and Kelly, J. S., 1974b, The characterisation of [3H]GABA uptake into the satellite glial cells of rat sensory ganglia, Brain Res. 66: 289–300.

    Article  Google Scholar 

  • Schrier, B. K., and Thompson, E. J., 1974, On the role of glial cells in the mammalian nervous system, J. Biol Chem. 249: 1769–1780.

    Google Scholar 

  • Semba, T., and Kano, M., 1969, Glycine in the spinal cord of cats with local tetanus rigidity, Science, N. Y. 164: 571–572.

    Article  Google Scholar 

  • Siggins, G. R., Oliver, A. P., Hoffer, B. J., and Bloom, F. E., 1971, Cyclic adenosine monophosphate and norepinephrine: Effects on transmembrane properties of cerebellar Purkinje cells, Science, N.Y. 171: 192–194.

    Article  Google Scholar 

  • Sillito, A. M., 1974, Modification of the receptive field properties of neurones in the visual cortex by bicuculline, a GABA antagonist, J. Physiol (London) 239: 36–37 P.

    Google Scholar 

  • Sims, K. L., Weitsen, H. A., and Bloom, F. E., 1971, Histochemical localization of brain succinic semialdehyde dehydrogenase-A γ-aminobutyric acid degradative enzyme, J. Histochem. Cytochem. 19: 405–415.

    Article  Google Scholar 

  • Snodgrass, S. R., and Iversen, L. L., 1973, Effects of aminooxyacetic acid on [3H] GABA uptake by rat brain slices, J. Neurochem. 20: 431–439.

    Article  Google Scholar 

  • Snodgrass, S. R., Hedley-Whyte, E. T., and Lorenzo, A. V., 1973, GABA transport by nerve ending fractions of cat brain, J. Neurochem. 20: 771–782.

    Article  Google Scholar 

  • Snyder, S. H., Logan, W. J., Bennett, J. P., and Arregui, A., 1973, Amino acids as central nervous transmitters: Biochemical studies, Neurosci Res. 5: 131–157.

    Google Scholar 

  • Sonnhof, U., Grafe, P., Krumnikl, G., Linder, M., and Schindler, L., 1974, Glutamate, an excitatory transmitter in the spinal cord of the frog? Pfluegers Arch. 347: R31.

    Google Scholar 

  • Sotelo, C., Privat, A., and Drian, M. -J., 1972, Localization of [3H]GABA in tissue culture of rat cerebellum using electron microscopy radioautography, Brain Res. 45: 302–308.

    Article  Google Scholar 

  • Stefanis, C., 1964, Hippocampal neurons: Their responsiveness to microelectrophoretically administered endogenous amines, Pharmacologist 6: 171.

    Google Scholar 

  • Steinberg, R., Altmann, H., and Bruggencate, G. Ten., 1974, Actions of iontophoretically applied dicarboxylic amino acids and postulated blockers in the red nucleus, Pfluegers Arch. 347: R55.

    Google Scholar 

  • Stone, T. W., 1973, Cortical pyramidal tract interneurones and their sensitivity to L-glutamic acid, J. Physiol (London) 233: 211–225.

    Google Scholar 

  • Storm-Mathisen, J., 1972, Glutamate decarboxylase in the rat hippocampal region after lesions of the afferent fibre systems. Evidence that enzyme is localized in intrinsic neurones, Brain Res. 40: 215–235.

    Article  Google Scholar 

  • Storm-Mathisen, J., and Fonnum, F., 1971, Quantitative histochemistry of glutamate decarboxylase in the rat hippocampal region, J. Neurochem. 18: 1105–1111.

    Article  Google Scholar 

  • Storm-Mathisen, J., and Fonnum, F., 1972, Localization of transmitter candidates in the hippocampal region, Prog. Brain Res. 36: 40–57.

    Google Scholar 

  • Straschill, M., and Perwein, J., 1969, The inhibition of retinal ganglion cells by catecholamines and γ-aminobutyric acid, Pfluegers Arch. 312: 45–54.

    Article  Google Scholar 

  • Straughan, D. W., and Legge, K. F., 1965, The pharmacology of amygdaloid neurones, Pharm. Pharmacol. 17: 675–677.

    Google Scholar 

  • Sverdlov, Yu. S., and Alekseeva, V. I., 1966, Effect of tetanus toxin on presynaptic inhibition in the spinal cord, Fed. Proc. Fed. Am. Soc. Exp. Biol. 25: T931–T935.

    Google Scholar 

  • Szentágothai, J., 1973, Synaptology of the visual cortex, in “Handbook of Sensory Physiology,” Vol. VII/3, “Central Visual Information B (R. Jung, ed.), pp. 269–324, Springer-Verlag, Berlin, Heidelberg, and New York.

    Google Scholar 

  • Tachiki, K. H., DeFeudis, F. V., and Aprison, M. H., 1972, Studies on the subcellular distribution of γ-aminobutyric acid in slices of rat cerebral cortex, Brain Res. 36: 215–217.

    Article  Google Scholar 

  • Van Gelder, N. M., 1965, The histochemical demonstration of γ-aminobutyric acid metabolism by reduction of a tetrazolium salt, J. Neurochem. 12: 231–237.

    Article  Google Scholar 

  • von Euler, C., 1962, On the significance of the high zinc content in the hippocampal formation, Physiol. L’Hippocampe 107: 135–145.

    Google Scholar 

  • Walberg, F., and Jansen, J., 1961, Cerebellar cortico-vestibular fibers in the cat, Exp. Neurol 3: 32–52.

    Article  Google Scholar 

  • Werman, R., 1966, Criteria for identification of a central nervous system transmitter, Comp. Biochem. Physiol 18: 745–766.

    Article  Google Scholar 

  • Whittaker, V. P., 1965, The application of subcellular fractionation techniques to the study of brain function, Prog. Biophys. Mol. Biol 15: 39–96.

    Article  Google Scholar 

  • Whittaker, V. P., 1968, The subcellular distribution of amino acids in brain and its relation to a possible transmitter function for these compounds, in “Structure and Function of Inhibitory Neuronal Mechanisms” (C. von Euler, S. Skoglund, and U. Soderberg, eds.), pp. 487–504, Pergamon Press, Oxford.

    Google Scholar 

  • Wilkin, G., Wilson, J. E., Balazs, R., Schon, F., and Kelly, J. S., 1974, How selective is high affinity uptake of GABA into inhibitory nerve terminals, Nature (London) 252: 397–399.

    Article  Google Scholar 

  • Wofsey, A. R., Kuhar, M. J., and Snyder, S. H., 1971, A unique synaptosomal fraction, which accumulates glutamic and aspartic acids, in brain tissue, Proc. Nad. Acad. Sci. U.S.A. 68: 1102–1106.

    Article  Google Scholar 

  • Wolman, M., 1971, A fluorescent histochemical procedure for gamma-aminobutyric acid, Histochemie 28: 118–130.

    Google Scholar 

  • Wu, J. -Y., Matsuda, T., and Roberts, E., 1973, Purification and characterization of glutamate decarboxylase from mouse brain, J. Biol Chem. 248: 3029–3034.

    Google Scholar 

  • Wyssbrod, H. R., Scott, W. N., Brodsky, W. A., and Schwartz, I. L., 1971, Carrier-mediated transport processes, in “Handbook of Neurochemistry,” Vol. V, Part B, “Metabolic Turnover in the Nervous System” (A. Lajtha, ed.), pp. 683–819, Plenum Press, New York and London.

    Google Scholar 

  • Yoshida, M., and Precht, W., 1971, Monosynaptic inhibition of neurons of the substantia nigra by caudato-nigral fibers, Brain Res. 32: 225–228.

    Article  Google Scholar 

  • Yoshida, M., Rabin, A., and Anderson, M., 1972, Monosynaptic inhibition of pallidal neurons by axon collaterals of caudato-nigral fibers, Exp. Brain Res. 15: 333–347.

    Article  Google Scholar 

  • Young, A. B., Oster-Granite, M. L., Herndon, R. M., and Snyder, S. H., 1974, Glutamic acid: Selective depletion by viral induced granule cell loss in hamster cerebellum, Brain Res. 73: 1–13.

    Article  Google Scholar 

  • Young, J. A. C., Brown, D. A., Kelly, J. S., and Schon, F., 1973, Autoradiographic localization of sites of [3H] γ-aminobutyric acid accumulation in peripheral autonomic ganglia, Brain Res. 63:479–486,

    Article  Google Scholar 

  • Zieglgänsberger, W., and Puil, E. A., 1972, Tetrodotoxin interference of CNS excitation by glutamic acid, Nature (London) New Biol 239: 204–205.

    Google Scholar 

  • Zieglgänsberger, W., and Puil, E. A., 1973a, Actions of glutamic acid on spinal neurones, Exp. Brain Res. 17: 35–49.

    Article  Google Scholar 

  • Zieglgänsberger, W., and Puil, E. A., 1973b, Intracellular investigations on the effect of microelectrophoretically applied glutamate antagonists upon spinal neurones of the cat, Naunyn-Schmiede- berg’s Arch. Exp. Pathol Pharmakol. 277: R89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Curtis, D.R. (1975). Gamma-Aminobutyric and Glutamic Acids as Mammalian Central Transmitters. In: Berl, S., Clarke, D.D., Schneider, D. (eds) Metabolic Compartmentation and Neurotransmission. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4319-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4319-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4321-9

  • Online ISBN: 978-1-4613-4319-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics