Skip to main content

Tricyclic and Monoamine Oxidase Inhibitor Antidepressants: Structure-Activity Relationships

  • Chapter
Handbook of Psychopharmacology

Abstract

Tricyclic and monoamine oxidase inhibitor (MAOI) antidepressants are the two classes of drugs most frequently used in the treatment of moderate to severe depression. Their efficacy in depression has been known for nearly two decades (Crane, 1957; Loomer et al., 1957; Kuhn, 1958). The tricyclic inhibitors tend to increase concentrations of certain biogenic amines in synaptic clefts in peripheral organs and brain by preventing their reuptake into the nerve endings from which they were secreted. MAOIs block the catabolism of biogenic amines within presynaptic nerve terminals, and thus provide that greater amounts of these transmitters accumulate within nerve terminals and are released into the synaptic cleft. Therefore, both drug classes can be expected to accomplish a similar effect-an increase in amine concentration in the synaptic cleft and a consequent greater excitation of postsynaptic receptors. This common effect of MAOIs and of tricyclic antidepressants as exerted in brain is generally considered to be the basis for their antidepressant activities. The antidepressant actions of imipramine and iproniazid in man, and their effectiveness as antagonists of the sedation produced in animals by reserpine-induced depletion of brain biogenic amines, contributed early to the formulation of the amine hypothesis of affective disorders (Schildkraut, 1965, 1969; Schild kraut and Kety, 1967).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, R. J., Kricka, L. J., and Ledwith, A., 1974, The nuclear magnetic resonance spectra and conformations of cyclic compounds. Part X. Conformational equilibria in 5-substituted 10,11-dihydrodibenz[b,f]azepines, J. Chem. Soc. Perkin Trans. 2:1648–1654.

    Google Scholar 

  • Achee, F. M., Togulga, G., and Gabay, S., 1974, Studies of monoamine oxidases: Properties of the enzyme in bovine and rabbit brain mitochondria, J. Neurochem. 22:651–661.

    PubMed  Google Scholar 

  • Alemany, A., Fernándex Alvarez, E., AND Martinez López, J. M., 1975, Inhibiteurs d’énzymes. XV. Préparation de (propargylamino méthyl)-3 indoles, Bull. Soc. Chim. France, No. 5–6, pp. 1223–1227.

    Google Scholar 

  • Alpers, H. S., and Himwich, H. E., 1969, An in vitro study of the effects of tricyclic antidepressant drugs on the accumulation of C14-serotonin by rabbit brain, Biol. Psychiatry 1:81–85.

    PubMed  Google Scholar 

  • Aslan, A., 1956, A new method for prophylaxis and treatment of aging with Novocaineutrophic and rejuvenating effects, Therapiewoche 7:14–22.

    Google Scholar 

  • Baker, B. R., 1967, Design of Active-Site-Directed Irreversible Enzyme Inhibitors, pp. 28–38, Wiley, New York.

    Google Scholar 

  • Baldessarini, R. J., 1975, The basis for amine hypotheses in affective disorders, Arch. Gen. Psychiatry 32:1087–1093.

    PubMed  Google Scholar 

  • Belleau, B., and Lacasse, G., 1964, Aspects of the chemical mechanism of complex formation between acetylcholinesterase and acetylcholine-related compounds, J. Med. Chem. 7:768–775.

    PubMed  Google Scholar 

  • Belleau, B., and Moran, J., 1963, Deuterium isotope effects in relation to the chemical mechanism of monoamine oxidase, Ann. N. Y. Acad. Sci. 107:822–839.

    PubMed  Google Scholar 

  • Berger, F. M., 1975, Depression and antidepressant drugs, Clin. Pharmacol. Ther. 18:241–248.

    PubMed  Google Scholar 

  • Bergin, R., and Carlstrom, D., 1971, The crystal and molecular structure of amphetamine sulphate, Acta Crystallogr. Sect. B: 27:2146–2152.

    Google Scholar 

  • Berti, F., and Shore, P. A., 1967, A kinetic analysis of drugs that inhibit the adrenergic neuronal membrane amine pump, Biochem. Pharmacol. 16:2091–2094.

    PubMed  Google Scholar 

  • Biel, J. H., 1972, Summary of Section IV: Pharmacology of monoamine oxidase inhibitors, Adv. Biochem. Psychopharmacol. 5:445–446.

    Google Scholar 

  • Biel, J. H., Horita, A., and Drukker, A. E., 1964, Monoamine oxidase inhibitors (hydrazines), in: Psychopharmacological Agents, Vol. 1 (M. Gordon, ed.), pp. 359–443, Academic Press, New York.

    Google Scholar 

  • Birkmayer, W., and Riederer, P., 1975, Biochemical post-mortem findings in depressed patients, J. Neural Transm. 37:95–109.

    PubMed  Google Scholar 

  • Blackburn, K. J., French, P. C., and Merrills, R. J., 1967, 5-Hydroxytryptamine uptake by rat brain in vitro, Life Sci. 6:1653–1663.

    PubMed  Google Scholar 

  • Blashko, H., 1963, Amine oxidase, in: The Enzymes, Vol. 8, 2nd ed. (P. D. Boyer, H. Lardy, and K. Myrback, eds.), pp. 337–351, Academic Press, New York.

    Google Scholar 

  • Bogdanski, D. F., and Brodie, B. B., 1966, Role of sodium and potassium ions in storage of norepinephrine by sympathetic nerve endings, Life Sci. 5:1563–1569.

    PubMed  Google Scholar 

  • Bolt, A. G., and Sleigh, M. J., 1974, Furoxanobenzofuroxan, a selective monoamine oxidase inhibitor, Biochem. Pharmacol. 23:1969–1977.

    PubMed  Google Scholar 

  • Bolt, A. G., Ghosh, P. B., and Sleigh, M. J., 1974, Benzo-2,1,5-oxadiazoles-a novel class of heterocyclic monoamine oxidase inhibitors, Biochem. Pharmacol. 23:1963–1968.

    PubMed  Google Scholar 

  • Bosin, T. R., Campaigne, E., and Maickel, R. P., 1972, Biochemical pharmacology of benzo[b]thiophene analogs of harmaline and harmine, Life Sci. 11:685–691.

    Google Scholar 

  • Braithwaite, R., and Goulding, R., 1975, Effective dosage of tricyclic antidepressants, Br. Med. J. Jan. 1975:206.

    Google Scholar 

  • Burgen, A. S. V., and Iversen, L. L., 1965, The inhibition of noradrenaline uptake by sympathetic amines in the rat isolated heart, Br. J. Pharmacol. 25:34–49.

    Google Scholar 

  • Buus Lassen, J., Squires, R. F., Christensen, J. A., and Molander, L., 1975, Neurochemical and pharmacological studies on a new 5HT-uptake inhibitor, FG4963, with potential antidepressant properties, Psychopharmacologia 42:21–26.

    Google Scholar 

  • Callingham, B. A., 1967, The effects of imipramine and related compounds on the uptake of noradrenaline into sympathetic nerve endings, in: Proceedings of the First International Symposium on Antidepressant Drugs (S. Garattini and M. N. G. Dukes, eds.), pp. 35–43. Excerpta Medica, Amsterdam.

    Google Scholar 

  • Carlsson, A., 1966, Pharmacological depletion of catecholamine stores, Pharmacol. Rev. 18:541–549.

    PubMed  Google Scholar 

  • Carlsson, A., 1970, Structural specificity for inhibition of [14C]-5-hydroxytryptamine uptake by cerebral slices, J. Pharm. Pharmacol. 22:729–732.

    PubMed  Google Scholar 

  • Carlsson, A., and Lindqvist, M., 1969, Central and peripheral monoaminergic membrane-pump blockade by some addictive analgesics and antihistamines, J. Pharm. Pharmacol. 21:460–464.

    PubMed  Google Scholar 

  • Carlsson, A., Fuxe, K., Hamberger, B., and Lindqvist, M., 1966, Biochemical and histochemical studies on the effects of imipramine-like drugs and (+)-amphetamine on central and peripheral catecholamine neurons, Acta Physiol. Scand. 67:481–497.

    PubMed  Google Scholar 

  • Carlsson, A., Fuxe, K., and Ungerstedt, U., 1968, The effect of imipramine on central 5-hydroxytryptamine neurons, J. Pharm. Pharmacol. 20:150–151.

    PubMed  Google Scholar 

  • Carlsson, A., Fuxe, K., Hamberger, B., and Malmfors, T., 1969a, Effect of a new series of bicyclic compounds with potential thymoleptic properties on the reserpine-resistant uptake mechanism of central and peripheral monoamine neurones in vivo and in vitro, Br. J. Pharmacol. 36:18–28.

    PubMed  Google Scholar 

  • Carlsson, A., Corrodi, H., Fuxe, K., and Hökfelt, T., 1969b, Effect of antidepressant drugs on the depletion of intraneuronal brain 5-hydroxytryptamine stores caused by 4-methyl-a-ethyl-meta-tyramine, Eur. J. Pharmacol. 5:357–366.

    PubMed  Google Scholar 

  • Carlsson, A., Corrodi, H., Fuxe, K., and Hökfelt, T., 1969c, Effects of some antidepressant drugs on the depletion of intraneuronal brain catecholamine stores caused by 4,α-dimethyl-meta-tyramine, Eur. J. Pharmacol. 5:367–373.

    PubMed  Google Scholar 

  • Carnmalm, B., Jacupovic, E., Johansson, L., de Paulis, T., Ramsby, S., Stjernstrom, N. E., Renyi, A. L., Ross, S. B., and Ogren, S. O., 1974, Antidepressant agents. 1. Chemistry and pharmacology of amino-substituted spiro[5H-dibenz(a,d)cycloheptene-5,1’-cycloalkanes], J. Med. Chem. 17:65–72.

    PubMed  Google Scholar 

  • Carnmalm, B., de Paulis, T., Jacupovic, E., Johansson, L., Lindberg, V. H., Ulff, B., Stjernstrom, N. D., Renyi, A. L., Ross, S. B., and Ogren, S.-O., 1975, Antidepressant agents. IV. Phenylcycloalkylamines, Acta Pharm. Suec. 12:149–172.

    PubMed  Google Scholar 

  • Cassano, G. B., Castrogiovanni, P., Conti, L., Sarteschi, P., 1974, Clinical experiences with GB 94. A new tetracyclic antidepressant compound, J. Pharmacol. 5(2):17.

    Google Scholar 

  • Christmas, A. J., Coulson, C. J., Maxwell, D. R., and Riddell, D., 1972, A comparison of the pharmacological and biochemical properties of substrate-selective monoamine oxidase inhibitors, Br. J. Pharmacol. 45:490–503.

    PubMed  Google Scholar 

  • Colburn, R. W., Goodwin, F. K., Bunney, W. E., Jr., and Davis, J. M., 1967, Effect of lithium on the uptake of noradrenaline by synaptosomes, Nature (London) 215:1395–1397.

    Google Scholar 

  • Colburn, R. W., Goodwin, F. K., Murphy, D. L., Bunney, W. E., Jr., and Davis, J. M., 1968, Quantitative studies of norepinephrine uptake by synaptosomes, Biochem. Pharmacol. 17:957–964.

    PubMed  Google Scholar 

  • Collins, G. G. S., Sandler, M., Williams, E. D., and Youdin, M. B. H., 1970, Multiple forms of human brain mitochondrial monoamine oxidase, Nature (London) 225:817–820.

    Google Scholar 

  • Coppen, A., 1967, The biochemistry of affective disorders, Br. J. Psychiatry 113:1237–1264.

    PubMed  Google Scholar 

  • Crane, G. E., 1957, Iproniazid (Marsilid) phosphate, a therapeutic agent for mental disorders and debilitating diseases, Psychiatr. Res. Rep. 8:142–152.

    Google Scholar 

  • Dengler, H. J., Spiegel, H. E., and Titus, E. O., 1961, Uptake of tritium-labelled norepinephrine in brain and other tissues of cat in vitro, Science 133:1072–1073.

    PubMed  Google Scholar 

  • Dengler, H. J., Michaelson, I. A., Spiegel, H. E., and Titus, E. O., 1962a, The uptake of labeled norepinephrine by isolated brain and other tissues of the cat, Int. J. Neuropharmacol. 1:23–38.

    Google Scholar 

  • Dengler, H. J., Wilson, C. W. M., Spiegel, H. E., and Titus, E., 1962b, Uptake of norepinephrine by isolated pineal bodies, Biochem. Pharmacol. 11:795–801.

    PubMed  Google Scholar 

  • Edwards, D. J., and Burns, M. O., 1974, Effect of tricyclic antidepressants upon human platelet monoamine oxidase, Life Sci. 15:2045–2058.

    Google Scholar 

  • Escobar, J. I., Schiele, B. C., and Zimmermann, R., 1974, The tranylcypromine isomers: A controlled clinical trial, Am. J. Psychiatry 131:1025–1026.

    PubMed  Google Scholar 

  • Ferris, R. M., and Stocks, B. D., 1972, Kinetic analysis of 3H-dl-norepinephrine and 3H-dopamine uptake into homogenates of rat striatum and hypothalamus and purified synaptosomes of rat whole brain, Abstracts, Fifth International Congress on Pharmacology, San Francisco, p. 68.

    Google Scholar 

  • Ferris, R. M., Tang, F. L. M., and Maxwell, R. A., 1972, A comparison of the capacities of isomers of amphetamine, deoxypipradrol and methylphenidate to inhibit the uptake of tritiated catecholamines in rat cerebral cortex slices, synaptosomal preparations of rat cerebral cortex, hypothalamus and striatum and into adrenergic nerves of rabbit aorta, J. Pharmacol. Exp. Ther. 181:407–416.

    PubMed  Google Scholar 

  • Ferris, R. M., Howard, J. L., and White, H. L., 1975, A relationship between clinical efficacy and various biochemical parameters of monoamine oxidase inhibitors, Pharmacologist 17:257.

    Google Scholar 

  • Fischer, E., Spatz, H., Heller, B., and Reggiani, H., 1972, Phenethylamine content of human urine and rat brain, its alterations in pathological conditions and after drug administration, Experientia 28:307–308.

    PubMed  Google Scholar 

  • Fujita, T., 1973, Structure-activity relationships of monoamine oxidase inhibitors, J. Med. Chem. 16:923–930.

    PubMed  Google Scholar 

  • Fuller, R. W., 1968, Influence of substrate in the inhibition of rat liver and brain monoamine oxidase, Arch. Int. Pharmacodyn. Ther. 174:32–36.

    PubMed  Google Scholar 

  • Fuller, R. W., 1972, Selective inhibition of monoamine oxidase, Adv. Biochem. Psychopharmacol. 5:339–354.

    PubMed  Google Scholar 

  • Fuller, R. W., Warren, B. J., and Molloy, B. B., 1970, Selective inhibition of monoamine oxidase in rat brain mitochondria, Biochem. Pharmacol. 19:2934–2936.

    PubMed  Google Scholar 

  • Fuxe, K., and Ungerstedt, V., 1967, Localization of 5-hydroxytryptamine uptake in rat brain after intraventricular injection, J. Pharm. Pharmacol. 19:335–337.

    PubMed  Google Scholar 

  • Fuxe, K., and Ungerstedt, U., 1968, Histochemical studies on the effect of (+)-amphetamine, drugs of the imipramine group and tyramine on central catecholamine and 5-hydroxytryptamine neurons after intraventricular injection of catecholamines and 5-hydroxytryptamine, Eur. J. Pharmacol. 4:135–144.

    PubMed  Google Scholar 

  • Fuxe, K., Hamberger, B., and Malmfors, T., 1967, The effect of drugs on accumulation of monoamines in tubero-infundibular dopamine neurons, Eur. J. Pharmacol. 1:334–341.

    Google Scholar 

  • George, T., Kaul, C. L., Grewal, R. S., and Tahilramani, R., 1971, Antihypertensive and monoamine oxidase inhibitory activity of some derivatives of 3-formyl-4-oxo-4H-pyrido[1,2-alpyrimidine, J. Med. Chem. 14:913–915.

    PubMed  Google Scholar 

  • Giachetti, A., and Shore, P. A., 1966, Studies in vitro of amine uptake mechanisms in heart, Biochem. Pharmacol. 15:607–614.

    PubMed  Google Scholar 

  • Glowinski, J., Axelrod, J., and Iversen, L. L., 1966, Regional studies of catecholamines in the rat brain. IV. Effects of drugs on the disposition and metabolism of H3-norepinephrine and H3-dopamine, J. Pharmacol. Exp. Ther. 153:30–41.

    PubMed  Google Scholar 

  • Gluckman, M. I., and Baum, T., 1969, The pharmacology of iprindole, a new antidepressant, Psychopharmacology 15:169–185.

    Google Scholar 

  • Goridis, C., and Neff, N. H., 1971, Evidence for a specific monoamine oxidase associated with sympathetic nerves, Neuropharmacology 10:557–564.

    PubMed  Google Scholar 

  • Gorkin, V. Z., Tat’ianenko, L. V., Suvorov, N. N., and Nekludov, A. D., 1967, On selective inhibition by o:-substituted tryptamine derivatives of enzymatic deamination of serotonin, Biokhimija 32:1036–1046.

    Google Scholar 

  • Greig, M. E., Walk, R. A., and Gibbons, A. J., 1959, The effect of three tryptamine derivatives on serotonin metabolism in vitro and in vivo, J. Pharmacol. Exp. Ther. 127:110–115.

    PubMed  Google Scholar 

  • Grivsky, E. M., and Hitchings, G. H., 1974, Syntheses of 2-chloro-4-acetylaminobenzonitrile isomers and structurally related compounds with biological activities, Ind. Chim. Belg. 39:490–500.

    Google Scholar 

  • Hamberger, B., 1967, Reserpine-resistant uptake of catecholamines in isolated tissues of the rat, Acta Physiol. Scand. Suppl. 295:1–56.

    PubMed  Google Scholar 

  • Hamberger, B., Malmfors, T., Norberg, K.-A., and Sachs, CH., 1964, Uptake and accumulation of catecholamines in peripheral adrenergic neurons of reserpinized animals, studied with a histochemical method, Biochem. Pharmacol. 13:841–844.

    PubMed  Google Scholar 

  • Hansch, C., Leo, A., Unger, S. H., Kim, K. H., Nikaitis, D., and Lien, E. J., 1973, “Aromatic” substituent constants for structure-activity correlations, J. Med. Chem. 16:1207–1216.

    PubMed  Google Scholar 

  • Hellerman, L., and Erwin, V. G., 1968, Mitochondrial monoamine oxidase. II. Action of various inhibitors for the bovine kidney enzyme, catalytic mechanism, J. Biol. Chem. 243:5234–5243.

    PubMed  Google Scholar 

  • Hellerman, L., Chuang, H. Y. K., and de Luca, D., 1972, Approaches to the catalytic mechanism of mitochondrial monoamine oxidase, Adv. Biochem. Pharmacol. 5:327–337.

    Google Scholar 

  • Hendley, E. D., and Snyder, S. H., 1968, Relationship between the action of monoamine oxidase inhibitors on the noradrenaline uptake system and their antidepressant efficacy, Nature (London) 220:1330–1331.

    Google Scholar 

  • Herd, J. A., 1969, A new antidepressant-M&B 9302, a pilot study and a double-blind controlled trial, Clin. Trials J., pp. 219–225.

    Google Scholar 

  • Hertting, G., Axelrod, J., Kopin, I. J., and Whitby, L. G., 1961, Lack of uptake of catecholamines after chronic denervation of sympathetic nerves, Nature (London) 189:66.

    Google Scholar 

  • Hester, J., Greig, M., Anthony, W., Heinzelman, R., and Szmuszkovicz, J., 1964, Enzyme inhibitory activity of 3-(2-aminobutyl)indole derivatives, J. Med. Chem. 7:274–279.

    PubMed  Google Scholar 

  • Hillarp, N.-A., and Malmfors, T., 1964, Reserpine and cocaine blocking of the uptake and storage mechanisms in adrenergic nerves, Life Sci. 3:703–708.

    PubMed  Google Scholar 

  • Hiramatsu, A., Tsurushiin, S., and Yasunobu, K. T., 1975, Evidence for essential histidine residues in bovine liver mitochondrial monoamine oxidase, Eur. J. Biochem. 57:587–593.

    PubMed  Google Scholar 

  • Ho, B. T., 1972, Monoamine oxidase inhibitors, J. Pharm. Sci. 61:821–837.

    PubMed  Google Scholar 

  • Ho, B. T., Mcisaac, W. M., Walker, K. E., and Estevez, V., 1968, Inhibitors of monoamine oxidase: Influence of methyl substitution on the inhibitory activity of β-carbolines, J. Pharm. Sci. 57:269–274.

    PubMed  Google Scholar 

  • Ho, B. T., Mcisaac, W. M., and Tansey, L. W., 1969, Inhibitors of monoamine oxidase IV: 6(or 8)-Substituted tetrahydro-β-carbolines and their 9-methyl analogs, J. Pharm. Sci. 58:998–1001.

    PubMed  Google Scholar 

  • Ho, B. T., Gardner, P. M., and Walker, K. E., 1973, Inhibition of MAO by (β-carbolinium halides, J. Pharm. Sci. 62:36–39.

    PubMed  Google Scholar 

  • Hollister, L. E., 1972, Clinical use of psychotherapeutic drugs. II. Antidepressant and antianxiety drugs and special problems in the use of psychotherapeutic drugs, Drugs 4:361–410.

    PubMed  Google Scholar 

  • Horn, A., 1973a, Conformational aspects of the inhibition of neuronal uptake of noradrenaline by tricyclic antidepressants, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 411–413, Pergamon Press, New York.

    Google Scholar 

  • Horn, A. S., 1973b, Structure-activity relations for the inhibition of 5-HT uptake into rat hypothalamic homogenates by serotonin and tryptamine analogues, J. Neurochem. 21:883–888.

    PubMed  Google Scholar 

  • Horn, A. S., and Snyder, S. H., 1972, Steric requirements for catecholamine uptake by rat brain synaptosomes: Studies with rigid analogs of amphetamine, J. Pharmacol. Exp. Ther. 180:523–530.

    PubMed  Google Scholar 

  • Horn, A. S., and Trace, R. C. A. M., 1974, Structure-activity relations for the inhibition of 5-hydroxytryptamine uptake by tricyclic antidepressants into synaptosomes from serotoninergic neurones in rat brain homogenates, Br. J. Pharmacol. 51:399–403.

    PubMed  Google Scholar 

  • Horn, A. S., Coyle, J. T., and Snyder, S. H., 1971, Catecholamine uptake by synaptosomes from rat brain: Structure-activity relationships of drugs with differential effects in dopamine and norepinephrine neurons, Mol. Pharmacol. 7:66–80.

    PubMed  Google Scholar 

  • Houslay, M. D., and Tipton, K. F., 1973, The nature of the electrophoretically separable multiple forms of rat liver monoamine oxidase, Biochem. J. 135:173–186.

    PubMed  Google Scholar 

  • Houslay, M. D., and Tipton, K. F., 1974, A kinetic evaluation of monoamine oxidase activity in rat liver mitochondria] outer membranes, Biochem. J. 139:645–652.

    PubMed  Google Scholar 

  • Houslay, M. D., Garrett, N. J., and Tipton, K. F., 1974, Mixed substrate experiments with human brain monoamine oxidase, Biochem. Pharmacol. 23:1937–1944.

    PubMed  Google Scholar 

  • Hsu, S. Y., Huang, C. L., and Waters, I. W., 1975, Effect of acylation with eleostearic acids on the monoamine oxidase inhibitory potency of some hydrazine antidepressants in mice, J. Med. Chem. 18:20–23.

    PubMed  Google Scholar 

  • Huszti, Z., 1972, Kinetic studies on rat brain monoamine oxidase, Mol. Pharmacol. 8:385–397.

    PubMed  Google Scholar 

  • Huszti, Z., Fekete, M., and Hajós, A., 1969, Monoamine oxidase inhibiting properties of AB-15-comparison with tranylcypromine, nialamide and pargyline, Biochem. Pharmacol. 18:2293–2301.

    Google Scholar 

  • Ison, R. R., Partington, P., and Roberts, G. C. K., 1973, The conformation of catecholamines and related compounds in solution, Mol. Pharmacol. 9:756–765.

    PubMed  Google Scholar 

  • Iversen, L. L., 1963, The uptake of noradrenalin by the isolated perfused rat heart, Br. J. Pharmacol. 21:523–537.

    Google Scholar 

  • Iversen, L. L., 1967, The Uptake and Storage of Noradrenaline in Sympathetic Nerves, University Press, Cambridge.

    Google Scholar 

  • Iversen, L. L., and Kravitz, E. A., 1966, Sodium dependence of transmitter uptake at adrenergic nerve terminals, Mol. Pharmacol. 2:360–362.

    PubMed  Google Scholar 

  • Jain, V. K., Swinson, R. P., and Thomas, J. G., 1970, Phenelzine in obsessional neurosis, Br. J. Psychiatry 117:237–238.

    PubMed  Google Scholar 

  • Jain, M., Sands, F., and von Korff, R. W., 1973, Monoamine oxidase activity measurements using radioactive substrates, Anal. Biochem. 52:542–554.

    PubMed  Google Scholar 

  • Johnson, W. C., 1975, A neglected modality in psychiatric treatment-the monoamine oxidase inhibitors, Dis. Nero. Syst. 36:521–525.

    Google Scholar 

  • Johnston, J. P., 1968, Some observations upon a new inhibitor of monoamine oxidase in brain tissue, Biochem. Pharmacol. 17:1285–1297.

    PubMed  Google Scholar 

  • Kafoe, W. F., and Leonard, B. E., 1973, The effect of a new tetracyclic anti-depressant compound, Org GB 94, on the turnover 9f dopamine, noradrenalin and serotonin in the rat brain, Arch Int. Pharmacodyn. Ther. 206:389–391.

    PubMed  Google Scholar 

  • Kannengiesser, M. H., Hunt, P., and Raynaud, J.-P., 1973, An in vitro model for the study of psychotropic drugs and as a criterion of antidepressant activity, Biochem. Pharmacol. 22:73–84.

    PubMed  Google Scholar 

  • Kaul, C. L., and Grewal, R. S., 1972, Antihypertensive and monoamine oxidase inhibitory activity of 3-amino-2-oxazolidinone (3AO) and its condensation product with 2-substi-tuted-3-formyl-4-oxo(4H)pyrido(1,2-a)pyrimidines, Biochem. Pharmacol. 21:303–316.

    PubMed  Google Scholar 

  • Kearney, E. B., Salach, J. I., Walker, W. H., Seng, R., and Singer, T. P., 1971, Structure of the covalently bound flavin of monoamine oxidase, Biochem. Biophys. Res. Commun. 42:490–496.

    PubMed  Google Scholar 

  • Kielholz, P., and Poldinger, W., 1968, Die Behandlung endogener Depressionen mit Psychopharmaka, Deutsch. Med. Wochenschr. 93:701–704.

    Google Scholar 

  • Klerman, G. L., 1971, Chemotherapy of depression, in: Brain Chemistry and Mental Disease Proceedings (B. T. Ho and W. M. McIsaac, eds.), pp. 379–402, Plenum Press, New York.

    Google Scholar 

  • Knoll, J., and Magyar, K., 1972, Some puzzling pharmacological effects of monoamine oxidase inhibitors, Adv. Biochem. Psychopharmacol. 5:393–408.

    PubMed  Google Scholar 

  • Knoll, J., Ecseri, Z., Kelemen, K., Nievel, J., and Knoll, B., 1965, Phenylisopropylmethyl-propinylamine (E-250), a new spectrum psychic energizer, Arch. Int. Pharmacodyn. Ther. 155:154–164.

    PubMed  Google Scholar 

  • Knoll, J., Vizi, E. S., and Somogyi, G., 1968, Phenylisopropylmethylpropynylamine (E-250), a monoaminooxidase inhibitor antagonising the effects of tyramine, Arzneim.-Forsch. 18:109–112.

    Google Scholar 

  • Korduba, C. A., Veals, J., and Symchowicz, S., 1973, The effect of pheniramine and its structural analogues on 5-hydroxytryptamine in rat and mouse brain, Life Sci. 13:1557–1564.

    PubMed  Google Scholar 

  • Koshland, D. E., and Neet, K. E., 1968, The catalytic and regulatory properties of enzymes, Annu. Rev. Biochem. 37:359–410.

    PubMed  Google Scholar 

  • Kuhn, R., 1958, The treatment of depressive states with G22355 (imipramine hydrochloride), Am. J. Psychiatry 115:459–464.

    PubMed  Google Scholar 

  • Lapin, I. P., and Oxenkrug, G. F., 1969, Intensification of the central serotoninergic processes as a possible determinant of the thymoleptic effect, Lancet 1:132–136.

    PubMed  Google Scholar 

  • Leonard, B. E., 1974, Some effects of a new tetracyclic and-depressant compound, Org GB 94, on the metabolism of monoamines in the rat brain, Psychopharmacology 36:221–236.

    Google Scholar 

  • Lidbrink, P., Jonsson, G., and Fuxe, K., 1971, The effect of imipramine-like drugs and antihistamine drugs on uptake mechanisms in the central noradrenaline and 5-hydroxytryptamine neurons, Neuropharmacology 10:521–536.

    PubMed  Google Scholar 

  • Lindmar, R., and Muscholl, E., 1964, Die Wirkung von Pharmaka auf die Elimination von Noradrenalin aus der Perfusionsflussigkeit and die Noradrenalinaufnahm in das isolierte Herz, Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 247:469–492.

    PubMed  Google Scholar 

  • Long, R. F., 1962, Reversible inhibition of brain monoamine oxidase in vitro and in vivo, Acta Neural. Scand. 35(S1):27–28.

    Google Scholar 

  • Loomer, H. P., Saunders, J. C., and Kline, N. S., 1957, A clinical and pharmacodynamic evaluation of iproniazid as a psychic energizer, Psychiatr. Res. Rep. 8:129–141.

    Google Scholar 

  • Macfarlane, M. D., and Besbris, H., 1974, Procaine (Gerovital H3) therapy: Mechanism of inhibition of monoamine oxidase, J. Am. Geriatr. Soc. 22:365–371.

    PubMed  Google Scholar 

  • Magyar, K., Satory, E., Mcszaros, Z., and Knoll, J., 1974, The monoamine oxidase inhibitory effect of new homopyrimidazole derivatives, Med. Biol. 52:384–389.

    PubMed  Google Scholar 

  • Maitre, L., Staehelin, M., and Been, H. J., 1971, Blockade of noradrenaline uptake by 34276-Ba, a new antidepressant drug, Biochem. Pharmacol. 20:2169–2186.

    PubMed  Google Scholar 

  • Maitre, L., Waldmeier, P. C., Baumann, P. A., and Staehelin, M., 1974, Effect of maprotoline, a new antidepressant drug, on serotonin uptake, Adv. Biochem. Psychopharmacol. 10:297–304.

    PubMed  Google Scholar 

  • Malitz, S., and Kanzler, M., 1971, Are antidepressants better than placebo?, Am. J. Psychiatry 127:1605–1611.

    PubMed  Google Scholar 

  • Martin, Y. C., and Biel, J. H., 1974a, Proceedings: Some considerations in the design of substrate and tissue specific inhibitors of MAO, Psychopharmacol. Bull. 10:8–9.

    PubMed  Google Scholar 

  • Martin, Y. C., and Biel, J. H., 1974b, Some considerations in the design of substrate and tissue-specific inhibitors of monoamine oxidase, Adv. Biochem. Psychopharmacol. 12:37–48.

    PubMed  Google Scholar 

  • Martin, Y. C., Martin, W. B., and Taylor, J. D., 1975, Regression analysis of the relationship between physical properties and the in vitro inhibition of monoamine oxidase by propynylamines, J. Med. Chem. 18:883–888.

    PubMed  Google Scholar 

  • Master, R. S., and Bastani, J. B., 1972, Iprindole in depressive states: A controlled, double-blind study, Curr. Med. Res. Opin. 1:3–9.

    PubMed  Google Scholar 

  • Maxwell, R. A., Keenan, P. D., Chaplin, E., Roth, B., and Eckhardt, S. B., 1969, Molecular features affecting the potency of tricyclic antidepressants and structurally related compounds as inhibitors of the uptake of tritiated norepinephrine by rabbit aortic strips, J. Pharmacol. Exp. Ther. 166:320–329.

    PubMed  Google Scholar 

  • Maxwell, R. A., Eckhardt, S. B., and Hite, G., 1970a, Kinetic and thermodynamic considerations regarding the inhibition by tricyclic antidepressants of the uptake of tritiated norepinephrine by the adrenergic nerves in rabbit aortic strips, J. Pharmacol. Exp. Ther. 171:62–69.

    PubMed  Google Scholar 

  • Maxwell, R. A., Chaplin, E., Eckhardt, S. B., Soares, J. R., and Hite, G., 1970b, Conformational similarities between molecular models of phenethylamine and of potent inhibitors of the uptake of tritiated norepinephrine by adrenergic nerves in rabbit aorta, J. Pharmacol. Exp. Ther. 173:158–165.

    PubMed  Google Scholar 

  • Maxwell, R. A., Eckhardt, S. B., Chaplin, E., and Burcsu, J., 1971, Inhibitors of the uptake of norepinephrine by the adrenergic nerves in rabbit aorta, in: Proceedings of the Symposium on the Physiology and Pharmacology of Vascular Neuroeffector Systems (J. Bevan, R. F. Furchgott, R. A. Maxwell and A. P. Somlyo, eds.), pp. 98–110, Karger, Basel.

    Google Scholar 

  • Maxwell, R. A., Ferris, R. M., Burcsu, J., Woodward, E. C., Tang, D., and Williard, K., 1974, The phenyl rings of tricyclic antidepressants and related compounds as determinants of the potency of inhibition of the amine pumps in adrenergic neurons of the rabbit aorta and in rat cortical synaptosomes, J. Pharmacol. Exp. Ther. 191:418–430.

    PubMed  Google Scholar 

  • Mccauley, R., and Racker, E., 1973, Separation of two monoamine oxidases from bovine brain, Mol. Cell. Biochem. 1:73–81.

    PubMed  Google Scholar 

  • Mcisaac, W. M., and Estevez, V., 1966, Structure-action relationship of β-carbolines as monoamine oxidase inhibitors, Biochem. Pharmacol. 15:1625–1627.

    PubMed  Google Scholar 

  • Mitchell, J. R., and Oates, J. A., 1970, Guanethidine and related agents. I. Mechanism of the selective blockade of adrenergic neurons and its antagonism by drugs, J. Pharmacol. Exp. Ther. 172:100–107.

    PubMed  Google Scholar 

  • Morris, J. B., and Beck, A. T., 1974, The efficacy of antidepressant drugs, Arch. Gen. Psychiatry 30:667–674.

    PubMed  Google Scholar 

  • Mosnaim, A. D., Inwang, E. E., Sugerman, J. H., de Martini, W. J., and Sabelli, H. C., 1973, Ultraviolet spectrophotometric determination of 2-phenylethylamine in biological samples and its possible correlation with depression, Biol. Psychiatry 6:235–257.

    PubMed  Google Scholar 

  • Murphy, J. E. (ed.), 1975a, Ludiomil symposium, J. Int. Med. Res. 3(Suppl. 2).

    Google Scholar 

  • Murphy, J. E., 1975b, A comparative clinical trial of Org GB 94 and imipramine in the [ treatment of depression in general practice, J. Int. Med. Res. 3:251–260.

    Google Scholar 

  • Nahunek, K., and Svestka, J., 1972, Therapeutic effect of tranylcypromine in endogenous depressions. Comparison with other antidepressant drugs, Cesk. Psychiatrie 68:3–11.

    Google Scholar 

  • Neff, N. H., and Yang, H.-Y. T., 1974, Another look at the monoamine oxidases and the monoamine oxidase inhibitor drugs, Life Sci. 14:2061–2074.

    PubMed  Google Scholar 

  • Neff, N. H., Yang, H.-Y., and Fuentes, J. A., 1974, The use of selective monoamine oxidase inhibitor drugs to modify amine metabolism in brain, Adv. Biochem. Psychopharmacol. 12:49–57.

    PubMed  Google Scholar 

  • Oi, S., Shimada, K., Inamasu, M., and Yasunobu, K. T., 1970, Mechanistic studies of beef liver mitochondrial amine oxidase, Arch. Biochem. Biophys. 139:28–37.

    PubMed  Google Scholar 

  • Ot, S., Yasunobu, K. T., and Westley, J., 1971, The effect of pH on the kinetic parameters and mechanism of beef liver monoamine oxidase, Arch. Biochem. Biophys. 145:557–564.

    Google Scholar 

  • Olivecrona, T., and Oreland, L., 1971, Reassociation of soluble monoamine oxidase with lipid-depleted mitochondria in the presence of phospholipids, Biochemistry 10:332–340.

    PubMed  Google Scholar 

  • Oreland, L., Kinemuchi, H., and Yoo, B. Y., 1973, The mechanism of action of the monoamine oxidase inhibitor pargyline, Life Sci. 13:1533–1541.

    PubMed  Google Scholar 

  • Ozaki, M., Weissbach, H., Ozaki, A., Witkop, B., and Udenfriend, S., 1960, Monoamine oxidase inhibitors and procedures for their evaluation in vivo and in vitro, J. Med. Pharm. Chem. 2:591–607.

    PubMed  Google Scholar 

  • Pare, C. M., 1970, Differentiation of two genetically specific types of depression by the response to antidepressant drugs, Humangenetik 9:199–201.

    PubMed  Google Scholar 

  • Patek, D. R., and Hellerman, L., 1974, Mitochondrial monoamine oxidase, mechanism of inhibition by phenylhydrazine and by aralkylhydrazines. Role of enzymatic oxidation, J. Biol. Chem. 249:2373–2380.

    PubMed  Google Scholar 

  • Philpot, F. J., 1940, The inhibition of adrenaline oxidation by local anaesthetics, J. Physiol. 97:301–307.

    PubMed  Google Scholar 

  • Physicians’ Desk Reference, 1975, Medical Economics Co., Oradell, New Jersey.

    Google Scholar 

  • Popov, N., Matthies, H., Lietz, W., Thiemann, CHR., and Jassmann, E., 1970, The effect of different substrates on the inhibition of rat brain and liver monoamine oxidase by arylalkylhydrazines, Biochem. Pharmacol. 19:2413–2418.

    PubMed  Google Scholar 

  • Post, M. L., Kennard, O., and Horn, A. S., 1974, Possible pharmacological and theoretical implications of X-ray structure of the tricyclic antidepressant imipramine, Nature (London) 252:493–495.

    Google Scholar 

  • Post, M. L., Kennard, O., and Horn, A. S., 1975, The tricyclic antidepressants: Imipramine hydrochloride. The crystal and molecular structure of 5-(3-dimethylaminopropyl)-10,11-dihydro-5H-dibenz[b,f)azepine hydrochloride, Acta Crystallogr. Sect. 3: 31:1008–1013.

    Google Scholar 

  • Prance, A. J., Wilson, I. C., Lynn, C. W., Alltop, L. B., and Strikeleather, R. A., 1974, L-Tryptophan in mania, contribution to a permissive hypothesis of affective disorders, Arch. Gen. Psychiatry 30:56–62.

    Google Scholar 

  • Rickels, K., Chung, H. R., Csanalosi, I., Sablosky, L., and Simon, J. H., 1973, Iprindole and imipramine in non-psychotic depressed out-patients, Br. J. Psychiatry 123:329–339.

    PubMed  Google Scholar 

  • Robinson, D. S., Lovenberg, W., Keiser, H., and Sjoerdsma, A., 1968, Effects of drugs on human blood platelet and plasma amine oxidase activity in vitro and in vivo, Biochem. Pharmacol. 17:109–119.

    PubMed  Google Scholar 

  • Robinson, D. S., Nies, A., Ravaris, C. L., and Lamborn, K. R., 1973, The monoamine oxidase inhibitor, phenelzine, in the treatment of depressive-anxiety states, Arch. Gen. Psychiatry 29:407–413.

    PubMed  Google Scholar 

  • Rosloff, B. N., and Davis, J. M., 1974, Effect of iprindole on norepinephrine turnover and transport, Psychopharmacology 40:53–64.

    Google Scholar 

  • Ross, S. B., and Renyi, A. L., 1967a, Accumulation of tritiated 5-hydroxytryptamine in brain slices, Life Sci. 6:1407–1415.

    PubMed  Google Scholar 

  • Ross, S. B., and Renyi, A. L., 1967b, Inhibition of the uptake of tritiated catecholamines by antidepressant and related agents, Eur. J. Pharmacol. 2:181–186.

    PubMed  Google Scholar 

  • Ross, S. B., and Renyi, A. L., 1969, Inhibition of the uptake of tritiated 5-hydroxytryptamine in brain tissue, Eur. J. Pharmacol. 7:270–277.

    PubMed  Google Scholar 

  • Ross, S. B., and Renyi, A. L., 1975a, Tricyclic antidepressant agents. I. Comparison of the inhibition of the uptake of 3H-noradrenaline and 14C-5-hydroxytryptamine in slices and crude synaptosome preparations of the midbrain-hypothalamus region of the rat brain, Acta Pharmacol. Toxicol. 36:382–394.

    Google Scholar 

  • Ross, S. B., and Renyi, A. L., 1975b, Tricyclic antidepressant agents. II. Effect of oral administration on the uptake of 3H-noradrenaline and 14C-5-hydroxytryptamine in slices of the midbrain-hypothalamus region of the rat, Acta Pharmacol. Toxicol. 36:395–408.

    Google Scholar 

  • Ross, S. B., Renyi, A. L., and Ogren, S.-O., 1971, A comparison of the inhibitory activities of iprindole and imipramine on the uptake of 5-hydroxytryptamine and noradrenaline in brain slices, Life Sci. 10:1267–1277.

    Google Scholar 

  • Roth, J. A., 1975, Inhibition of rabbit monoamine oxidase by doxepin and related drugs, Life Sci. 16:1309–1320.

    PubMed  Google Scholar 

  • Roth, J. A., and Gillis, C. N., 1974a, Inhibition of lung, liver and brain monoamine oxidase by imipramine and desipramine, Biochem. Pharmacol. 23:1138–1140.

    PubMed  Google Scholar 

  • Roth, J. A., and Gillis, C. N., 1974b, Deamination of β-phenylethylamine by monoamine oxidase-inhibition by imipramine, Biochem. Pharmacol. 23:2537–2545.

    PubMed  Google Scholar 

  • Roth, J. A., and Gillis, C. N., 1975, Some structural requirements for inhibition of type A and B forms of rabbit monoamine oxidase by tricyclic psychoactive drugs, Mol. Pharmacol. 11:28–35.

    PubMed  Google Scholar 

  • Sabelli, H. C., Mosnaim, A. D., and Vazquez, A. J., 1974, Phenethylamine: Possible role in depression and antidepressive drug action, in: Neurohumoral Coding of Brain Function (R. R. Drucker-Colin and R. D. Meyer, eds.), pp. 331–357, Plenum Press, New York.

    Google Scholar 

  • Sakalis, G., Oh, D., Gershon, S., and Shopsin, B., 1974, A trial of Gerovital H3 in depression during senility, Curr. Ther. Res. 16:59–63.

    PubMed  Google Scholar 

  • Salama, A. I., Insalaco, J. R., and Maxwell, R. A., 1971, Concerning the molecular requirements for the inhibition of the uptake of racemic 3H-norepinephrine into rat cerebral cortex slices by tricyclic antidepressants and related compounds, J. Pharmacol. Exp. Ther. 178:474–481.

    PubMed  Google Scholar 

  • Sandler, M., 1973, New look at monoamine oxidase inhibitors; the new biochemical background, Proc. R. Soc. Med. 66:946–947.

    PubMed  Google Scholar 

  • Sarges, R., Koe, B. K., Weissman, A., and Schaefer, J. P., 1974, Blockade of heart 3H-norepinephrine uptake by 4-phenyl-l-aminotetralines: Implications for the active conformation of imipramine-like drugs, J. Pharmacol. Exp. Ther. 191:393–402.

    PubMed  Google Scholar 

  • Schildkraut, J. J., 1965, The catecholamine hypothesis of affective disorders: Review of supporting evidence, Am. J. Psychiatry 123:509–522.

    Google Scholar 

  • Schildkraut, J. J., 1969, Neuropsychopharmacology and the Affective Disorders, Little, Brown, Boston.

    Google Scholar 

  • Schildkraut, J. J., and Kety, S. S., 1967, Biogenic amines and emotion, Science 156:21–30.

    PubMed  Google Scholar 

  • Severina, I. S., 1973, On the substrate-binding sites of the active centre of mitochondrial monoamine oxidase, Eur. J. Biochem. 38:239–246.

    PubMed  Google Scholar 

  • Shaskan, E. G., and Snyder, S. H., 1970, Kinetics of serotonin accumulation into slices from rat brain: Relationship to catecholamine uptake, J. Pharmacol. Exp. Ther. 175:404–418.

    PubMed  Google Scholar 

  • Singer, T. P., and Barron, E. S. G., 1945, Studies on biological oxidations. XX. Sulfhydryl enzymes in fat and protein metabolism, J. Biol. Chem. 157:241–253.

    Google Scholar 

  • Snyder, S. H., and Coyle, J. T., 1969, Regional differences in H3-norepinephrine and H3-dopamine uptake into rat brain homogenates, J. Pharmacol. Exp. Ther. 165:78–86.

    PubMed  Google Scholar 

  • Squires, R. F., 1968, Additional evidence for the existence of several forms of mitochondrial monoamine oxidase in the mouse, Biochem. Pharmacol. 17:1401–1409.

    PubMed  Google Scholar 

  • Squires, R. F., and Buus Lassen, J., 1968, Some pharmacological and biochemical properties of γ-morpholino-butyrophenone (NSD 2023), a new monoamine oxidase inhibitor, Biochem. Pharmacol. 17:369–384.

    PubMed  Google Scholar 

  • Stern, I. J., Hollifield, R. D., Wilk, S., and Buzard, J. A., 1967, The antimonoamine oxidase effects of furazolidone, J. Pharmacol. Exp. Ther. 156:492–499.

    PubMed  Google Scholar 

  • Strömblad, B. C. R., and Nickerson, M., 1961, Accumulation of epinephrine and norepinephrine by some rat tissues, J. Pharmacol. Exp. Ther. 134:154–159.

    PubMed  Google Scholar 

  • Swett, L. R., Martin, W. B., Taylor, J. D., Everett, G. M., Wykes, A. A., and Gladish, Y. C., 1963, Structure-activity relationships in the pargyline series, Ann. N. Y. Acad. Sci. 107:891–898.

    PubMed  Google Scholar 

  • Thonen, H., Hurlimann, A., and Haefely, W., 1968, Mechanism of amphetamine accumulation in the isolated perfused heart of the rat, J. Pharm. Pharmacol. 20:1–11.

    Google Scholar 

  • Tipton, K. F., 1968, The reaction pathway of pig brain mitochondrial monoamine oxidase, Eur. J. Biochem. 5:316–320.

    PubMed  Google Scholar 

  • Tipton, K. F., 1972, Some properties of monoamine oxidase, Adv. Biochem. Psychopharmacol. 5:11–24.

    PubMed  Google Scholar 

  • Tipton, K. F., Houslay, M. D., and Garrett, N. J., 1973, Allotopic properties of human brain monoamine oxidase, Nature (London) 246:213–214.

    Google Scholar 

  • Tringer, L., Halts, G., and Varga, E., 1967, The effect of L-E-250 (L-phenyl-isopropyl-methyl-propinyl-amine HCl) in depressions, Conferentia Hungarica pro Therapia et Investigatione in Pharmacologia V, Budapest, pp. 111–113.

    Google Scholar 

  • Tuck, J. R., and Punell, G., 1973, Uptake of [3H]5-hydroxytryptamine and [3H]noradrenaline by slices of rat brain incubated in plasma from patients treated with chlorimipramine, imipramine or amitriptyline, J. Pharm. Pharmacol. 25:573–574.

    PubMed  Google Scholar 

  • Tyrer, P., Candy, J., and Kelly, D., 1973, Phenelzine in phobic anxiety: A clinical trial, Physiol. Med. 3:120–124.

    Google Scholar 

  • van der Zee, P., and Hespe, W., 1973, Influence of orphenadrine hydrochloride and its N-demethylated derivatives on the in vitro uptake of noradrenaline and 5-hydroxytryptamine by rat brain slices, Neuropharmacology12:843–851.

    PubMed  Google Scholar 

  • Vane, J. R., 1959, The relative activities of some tryptamine analogues on the isolated rat stomach strip preparation, Br. J. Pharmacol. 14:87–98.

    Google Scholar 

  • van Praag, H. M., 1974, Toward a biochemical classification of depression, Adv. Biochem. Psychopharmacol. 11:357–368.

    PubMed  Google Scholar 

  • Varga, E., 1965, Vorläufiger Bericht über die Wirkung des Präparates E-250 (phenyl-isopropyl-methyl-propinylamin-chlorhydrat), Conferentia Hungarica pro Therapia et Investigatione in Pharmacologia III, Budapest, pp. 197–201.

    Google Scholar 

  • Vogel, H. P., Bente, D., and Helmchen, H., 1974, Mianserin vs. amitriptyline-a double-blind study evaluated by the AMP-system, J. Pharmacol. 5(2):103.

    Google Scholar 

  • Webb, J. L., 1963, Enzyme and Metabolic Inhibitors, Academic Press, New York.

    Google Scholar 

  • Weetman, D. F., and Sweetman, A. J., 1971, Realistic estimations of kinetic constants for the oxidation of naturally occurring monoamines by monoamine oxidase, Anal. Biochem. 41:517–521.

    PubMed  Google Scholar 

  • Wheatley, D., 1970, A comparative trial of a new monoamine oxidase inhibitor in depression, Br. J. Psychiatry 117:573–574.

    PubMed  Google Scholar 

  • Whitby, L. G., Axelrod, J., and Weil-Malherbe, H., 1961, The fate of H3-norepinephrine in animals, J. Pharmacol. Exp. Ther. 132:193–201.

    PubMed  Google Scholar 

  • White, H. L., and Wu, J. C., 1975a, Substrate-selective binding sites of human brain monoamine oxidase, Fed. Proc. 34:283.

    Google Scholar 

  • White, H. L., and Wu, J. C., 1975b, Multiple binding sites of human brain monoamine oxidase as indicated by substrate competition, J. Neurochem. 25:21–26.

    PubMed  Google Scholar 

  • White, H. L., and Glassman, A. T., 1977, Multiple binding sites of human brain and liver monoamine oxidase: Substrate specificities, selective inhibitions, and attempts to separate enzyme forms, J. Neurochem. (in press).

    Google Scholar 

  • Williams, C. H., 1974, Monoamine oxidase. I. Specificity of some substrates and inhibitors, Biochem. Pharmacol. 23:615–628.

    PubMed  Google Scholar 

  • Wong, D. T., Horng, J.-S., and Fuller, R. W., 1973, Kinetics of serotonin accumulation into synaptosomes of rat brain-effects of amphetamine and chloroamphetamines, Biochem. Pharmacol. 22:311–322.

    PubMed  Google Scholar 

  • Wong, D. T., Horng, J. S., Bymaster, F. P., Hauser, K. L., and Molloy, B. B., 1974, A selective inhibitor of serotonin uptake: Lilly 110140, 3-(P-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine, Life Sci. 15:471–479.

    PubMed  Google Scholar 

  • Yang, H.-Y. T., and Neff, N. H., 1973, β-Phenylethylamine: A specific substrate for type B monoamine oxidase of brain, J. Pharmacol. Exp. Ther. 187:365–371.

    PubMed  Google Scholar 

  • Yang, H.-Y. T., and Neff, N. H., 1974, The monoamine oxidases of brain: Selective inhibition with drugs and the consequences for the metabolism of the biogenic amines, J. Pharmacol. Exp. Ther. 189:733–740.

    PubMed  Google Scholar 

  • Youdim, M. B. H., Collins, G. G. S., and Sandler, M., 1969, Multiple forms of rat brain monoamine oxidase, Nature (London) 223:626–628.

    Google Scholar 

  • Zeller, E. A., 1960, Studies on the active center of monoamine oxidase, Experientia 16:399–402.

    PubMed  Google Scholar 

  • Zeller, E. A., 1963, A new approach to the analysis of the interaction between monoamine oxidase and its substrates and inhibitors, Ann. N. Y. Acad. Sci. 107:811–820.

    PubMed  Google Scholar 

  • Zeller, E. A., Barsky, J., Fouts, J. R., Kirchheimer, W. F., and van Orden, L. S., 1952, Influence of isonicotinic acid hydrazide (INH) and 1-isonicotinoyl-2-isopropylhydrazine (IIH) on bacterial and mammalian enzymes, Experientia 8:349–350.

    Google Scholar 

  • Zeller, E. A., Gartner, B., and Hemmerich, P., 1972, 4a,5-Cycloaddition reactions of acetylenic compounds at the flavoquinone nucleus as mechanisms of flavoprotein inhibitions, Z. Naturforsch. 27:1050–1052.

    Google Scholar 

  • Zirkle, C. L., and Kaiser, C., 1964, Monoamine oxidase inhibitors (nonhydrazines), in: Psychopharmacological Agents, Vol. 1 (M. Gordon, ed.), pp. 445–554, Academic Press, New York.

    Google Scholar 

  • Zirkle, C. L., Kaiser, C., Tedeschi, D. H., Tedeschi, R. E., and Burger, A., 1962, Substituted cyclopropylamines. II. Effect of structure upon monoamine oxidase-inhibitory activity as measured in vivo by potentiation of tryptamine convulsions, J. Med. Pharm. Chem. 5:1265–1284.

    Google Scholar 

  • Zung, W. W. K., Gianturco, D., Pfeiffer, E., Wang, H. S., Whanger, A., Bridge, T. P., and Potkin, S. G., 1974, Pharmacology of depression in the aged: Evaluation of Gerovital H3 as an antidepressant drug, Psychosomatics 15:127–131.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Maxwell, R.A., White, H.L. (1987). Tricyclic and Monoamine Oxidase Inhibitor Antidepressants: Structure-Activity Relationships. In: Iversen, L.L., Iversen, S.D., Snyder, S.H. (eds) Handbook of Psychopharmacology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4045-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4045-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4047-8

  • Online ISBN: 978-1-4613-4045-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics