Skip to main content

Taurine Effects on Calcium Transport in Nervous Tissue

  • Chapter
Natural Sulfur Compounds

Abstract

In the last years there have been increasing interest in the role of taurine in the central nervous system (CNS), because of its possible association with the mechanisms regulating nervous excitability1. After the finding of the generalized anticonvulsant action of taurine2–4as well as of its effects on human epilepsies 5,6, many investigations have been undertaken in an attempt to elucidate the intimate mechanism through which taurine is involved in the control of nervous excitation. Taurine, when applied iontophoretically, has depressant effects on neuronal activity7,8 and has been proposed to be acting as an inhibitory neurotransmitter9,10; actually, it appears to possess many of the properties expected for such a role. However, a rigorous analysis of the criteria a substance must fulfill in order to be identified as a transmitter must be made when evaluating such a role for taurine in the CNS. Particular emphasis should be made on the specificity of taurine actions in order to exclude the possibility that some of its effects were mediated through receptors for neurotransmitter amino acids with which taurine has structural analogies, like GABA or glycine. It is also of extreme interest to localize the precise sites at which taurine is being released or taken up, or at which it is modifying membrane excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Barbeau and R. Huxtable eds. “Taurine and Neurological Disorders”, Raven Press, New York (1978).

    Google Scholar 

  2. N. M. Van Gelder, Antagonism by taurine of cobalt induced epilepsy in cat and mouse, Brain Res. 47: 157 (1972).

    Article  PubMed  Google Scholar 

  3. K. Izumi, H. Igisu, and T. Fukuda, Supression of seizures by taurine-specific or nonspecific?, Brain Res. 76: 171 (1974).

    Article  PubMed  CAS  Google Scholar 

  4. R. Mutani, L. Bergamini, R. Fariello, and M. Delsedime, Effects of taurine in chronic experimental epilepsy, Brain Res. 70: 170 (1974).

    Article  PubMed  CAS  Google Scholar 

  5. L. Bergamini, R. Mutani, M. Delsedime, and L. Durelli, First clinical experience on the antiepileptic action of taurine, Eur. Neurol. 11: 261 (1974).

    Article  PubMed  CAS  Google Scholar 

  6. A. Barbeau and J. Donaldson, Zinc, taurine and epilepsy, Arch. Neurol. 52: 1 (1974).

    Google Scholar 

  7. D. R. Curtis and J.C. Watkins, The excitation and depression of spinal by structurally related amino acids, J. Neurochem. 6: 117 (1960).

    Article  PubMed  CAS  Google Scholar 

  8. K. Krnjevic and E. Puil, Electrophysiological studies on actions of taurine, in “Taurine”, R. Huxtable and A. Barbeau, eds., pp. 179, Raven Press, New York (1976).

    Google Scholar 

  9. A.N. Davison and L.K. Kaczmarek, Taurine - A possible neurotransmitter, Nature, 234: 107 (1971).

    Article  PubMed  CAS  Google Scholar 

  10. P. Mandel and H. Pasantes-Morales, Taurine: a putative neurotransmitter, in Advances in Biochemical Psychopharmacology, E. Costa ed. pp. 141, Raven Press, New York (1976).

    Google Scholar 

  11. R. P. Shank and M.H. Aprison, The metabolism in vivo of glycine and serine in eight areas of the rat nervous system, J. Neurochem. 17: 1461 (1970).

    Article  PubMed  CAS  Google Scholar 

  12. J. B. Lombardini, Regional and subcellular studies on taurine in the rat central nervous system, in “Taurine”, R. Huxtable and A. Barbeau eds., pp. 311, Raven Press, New York (1976).

    Google Scholar 

  13. G. G.S. Collins, The rate of synthesis, uptake and disappearance of 14C-taurine in eight areas of the rat central nervous system, Brain Res. 76: 447 (1974).

    Article  PubMed  CAS  Google Scholar 

  14. Y. Yoneda and K. Kuriyama, A comparison of mieredistribution of taurine and cysteine sulphinate decarboxylase activity with those of GABA and L-glutamate decarboxylase activity in rat spinal cord and thalamus. J. Neurochem. 30: 821 (1978).

    Article  PubMed  CAS  Google Scholar 

  15. N. S. Nadi, W.J. McBride and M.H. Aprison, Distribution of several amino acids in regions of the cerebellum of the rat, J. Neurochem. 28: 453 (1977).

    Article  PubMed  CAS  Google Scholar 

  16. Y. Okada, Distribution of GABA and GAD activity in the layers of superior colliculus of the rabbit, in “GABA in Nervous System Function” E. Roberts, T.N. Chase and D.B. Tower eds. pp. 229 Raven Press, New York (1976).

    Google Scholar 

  17. K. Kuriyama and H. Kimura, Distribution and possible functional roles of GABA in retina, lower auditory pathway and hypothalamus in “GABA in Nervous System Function” E. Roberts, T.N. Chase and D.B. Tower eds. pp. 203 Raven Press, New York (1976).

    Google Scholar 

  18. M. H. Aprison and R. Werman, The distribution of glycine in cat spinal cord and roots, Life Sci. 4, 2075 (1965).

    Article  PubMed  CAS  Google Scholar 

  19. D. R. Curtis, L. H6sli and G.A.R. Johnston, A pharmacological study of the depression of spinal neurons by glycine and related amino acids, Exp. Brain Res. 6: 1 (1968).

    CAS  Google Scholar 

  20. D. R. Curtis and A.K. Tebecis, Bicuculline and thalamic inhibition, Exp. Brain Res. 16: 210 (1972).

    Article  CAS  Google Scholar 

  21. D. R. Curtis, A.W. Duggan, D. Felix and G.A.R. Johnston, Bicuculine an antagonist of GABA and synaptic inhibition of the spinal cord of the cat, Brain Res. 33: 57 (1971).

    Article  PubMed  CAS  Google Scholar 

  22. D. R. Curtis, L. Hosli, and G.A.R. Johnston, A pharmacological study of the depression of spinal neurons by glycine and related amino acids. Exp. Brain Res. 6: 1 (1968)

    Article  PubMed  CAS  Google Scholar 

  23. D. R. Curtis, A.W. Duggan, D. Felix, G.A.R. Johnston and H. McLennan, Antagonism between bicuculline and GABA in the cat brain, Brain Res. 33: 57 (1971).

    Article  PubMed  CAS  Google Scholar 

  24. J. L. Barker, R.A. Nicoll, and A. Padjen, Studies on convulsants in the isolated frog spinal cord. I. Antagonism of amino acid responses, J- Physiol, 245: 521 (1975).

    PubMed  CAS  Google Scholar 

  25. J. L. Barker, R.A. Nicoll, and A. Padjen, Studies on convulsants in the isolated frog spinal cord. II. Effects on root potentials, J. Physiol. 245: 537 (1975).

    PubMed  CAS  Google Scholar 

  26. R. Gruener and H.J. Bryant, Excitability modulation by taurine. Action on axon membrane permeabilities, J. Pharmacol. Exp. Ther. 194: 514 (1975).

    PubMed  CAS  Google Scholar 

  27. S. R. Zukin, A.B. Young, and S.H. Snyder, Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system. Proc. Nat. Acad. Sci 71: 4802 (1974).

    Article  PubMed  CAS  Google Scholar 

  28. A. B. Young and S.H. Snyder, Strychnine binding in rat spinal cord membranes associated with the synaptic glycine receptor: cooperativity of glycine interactions, Mol. Pharmacol. 10: 790 (1974).

    CAS  Google Scholar 

  29. S. J. Enna and S.H. Snyder, Properties of gamma-aminobutyric acid (GABA) receptor binding in rat brain synaptic membrane fractions, Brain Res. 100: 81 (1975).

    Article  PubMed  CAS  Google Scholar 

  30. S. J. Enna and S.H. Snyder, Gamma aminobutyric acid (GABA) receptor binding in mammalian retina, Brain Res. 115: 174 (1976).

    Article  PubMed  CAS  Google Scholar 

  31. P. Lahdesmaki and S.S. Oja, On the mechanism of taurine transport at brain cell membranes, J. Neurochem. 20: 1411

    Google Scholar 

  32. R. E. Hruska, R.J. Huxtable, R. Bressler, and H.I. Yamamura Sodium-dependent, high affinity transport of taurine into rat brain synaptosomes, Proc. West, Pharmacol. Soc. 19: 152 (1976).

    CAS  Google Scholar 

  33. W. Sieghart and M. Karobath, Evidence for specific synaptosomal localization of exogenous accumulated taurine, J. Neurochem. 23: 911 (1974).

    Article  PubMed  CAS  Google Scholar 

  34. W. J. Logan and S.H. Snyder, High affinity uptake systems for glycine, glutamic acid and aspartic acid in synaptosomes of rat central nervous system, Brain Res. 42: 413 (1972).

    Article  PubMed  CAS  Google Scholar 

  35. H. H. Jasper and I. Koyama, Rate of release of amino acids from the cerebral cortex in the cat as affected by brain stem and thalamic stimulation, Can. J. Physiol, Pharmacol. 47: 889 (1969).

    Article  CAS  Google Scholar 

  36. R. M. Clark and G.G.S. Collins, The release of endogenous amino acids from the mammalian visual cortex, J. Physiol. (Lond.) 246: 16 (1975).

    Google Scholar 

  37. L. K. Kackzmarek and A.N. Davison, Uptake and release of taurine from rat brain slices, J. Neurochem. 19: 2355 (1972).

    Article  Google Scholar 

  38. F. Orrego, R. Miranda and C. Saldate, Electrically induced release of labelled taurine, and alanine, glycine glutamate and other amino acids from rat neocortical slices in vitro. Neuroscience, 1: 325 (1976).

    Article  PubMed  CAS  Google Scholar 

  39. A.M. Lopez-Colome, R. Tapia, R. Salceda, and H. Pasantes-Morales, K stimulated release of labeled J -aminobutyrate, glycine and taurine in slices of several regions of rat central nervous system, Neuroscience 3: 1069 (1978).

    Article  PubMed  CAS  Google Scholar 

  40. W. Sieghart and K. Heckl, Potassium evoked release of taurine from synaptosomal fractions of rat cerebral cortex, Brain Res. 116: 538 (1976).

    Article  PubMed  CAS  Google Scholar 

  41. P. Dolara, A. Agresti, A. Giotti and G. Pasquini, Effect of taurine on calcium kinetics of guinea pig heart, Eur. J. Pharmacol. 24: 352 (1973).

    Article  PubMed  CAS  Google Scholar 

  42. F. Haj6s, An improved method for the preparation of synaptosomal fractions in high purity, Brain Res. 93: 485 (1975).

    Article  PubMed  CAS  Google Scholar 

  43. M. P. Blaustein and C.S. Oborn, The influence of sodium on calcium fluxes in pinched-off nervfe terminals in vitro, J. Physiol. 247: 657 (1975).

    PubMed  CAS  Google Scholar 

  44. P. F. Baker, Transport and metabolism of calcium ions in nerve, Progr. Biophvs. Mol. Biol. 24: 117 (1972).

    Google Scholar 

  45. M. P. Blaustein, The interrelationship between sodium and calcium fluxes across cell membranes, Rev. Physiol. Biochem. Pharmacol. 70: 33 (1974).

    Article  PubMed  CAS  Google Scholar 

  46. T. J. Rink, The influence of sodium on calcium movements and catecholamine release in thin slices of bovine adrenal medulla, J. Physiol. 266: 297 (1977).

    PubMed  CAS  Google Scholar 

  47. P. P.M. Schnetkamp, F.J.M. Daemen, and S.L. Bonting, Biochemical aspects of the visual process, XXXVI. Calcium accumulation in cattle rod outer segments: evidence for a calcium-sodium exchange carrier in the rod sac membrane, Biochim. Biophys. Acta 468: 259 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Pasantes-Morales, H., Gamboa, A. (1980). Taurine Effects on Calcium Transport in Nervous Tissue. In: Cavallini, D., Gaull, G.E., Zappia, V. (eds) Natural Sulfur Compounds. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3045-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3045-5_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3047-9

  • Online ISBN: 978-1-4613-3045-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics