Skip to main content

Clearance — Models, Validation and Implications

  • Chapter
Pharmacokinetics
  • 676 Accesses

Abstract

The utility of clearance (CL) as the parameter to relate rate of elimination to measured drug concentration is now well established in pharmacokinetics. The concept of clearance was first proposed by Möller et al. (1) to characterize the handling of urea by the kidney, and subsequently applied to quantitate the removal of substances by the liver, gastrointestinal tract and other eliminating organs. Today, clearance measurements are used to assess organ function, to predict steady-state concentrations following constant rate regimens, to predict the degree of hepatic first-pass loss of orally administered drug, and to assess the extent of drug absorption (2,3). The application of clearance concepts in pharmacokinetics has come with the measurement of concentrations of drug and metabolites in plasma and blood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Müller, J.J. Mcintosh and D. Van Slyke, Studies of urea excretion, J. Clin. Invest. 6: 427–446 (1929).

    Article  Google Scholar 

  2. M. Rowland, L.Z. Benet and G.G. Graham, Clearance concepts in pharmacokinetics, J. Pharmacokin. Biopharm. 1: 123–126 (1973).

    Article  CAS  Google Scholar 

  3. M. Rowland, Effect of some physiological factors on bioavailability of oral dosage forms, in: “Current Concepts in the Pharmaceutical Sciences: Dosage Form Design and Evaluation,” J. Swarbrick, ed., Lea and Febiger, Philadelphia (1973), pp. 182–230.

    Google Scholar 

  4. D. Cutler, A linear recirculatory model for drug disposition, J. Pharmacokin. Biopharm. 7: 101–116 (1979).

    Article  CAS  Google Scholar 

  5. K. Cassidy and B. Houston,In vivoassessment of extrahepatic conjugative metabolism in first-pass effects using the model compound phenol, J. Pharm. Pharmacol. 32: 57–59 (1980).

    Article  PubMed  CAS  Google Scholar 

  6. J.A. Jansen, Influence of plasma protein binding kinetics on hepatic clearance assessed from a “tube” model and a “well-stirred” model, J. Pharmacokin. Biopharm. 9: 15–25 (1981).

    Article  CAS  Google Scholar 

  7. T.N. Tozer, Concepts basic to pharmacokinetics, Pharmac. Therap. 12: 109–132 (1981).

    Article  CAS  Google Scholar 

  8. R.W. Brauer, G.F. Leung, R.F. McElroy Jr. and R.H. Holloway, Circulatory pathways in the rat liver as revealed by P32 chromic phosphate colloid uptake in the isolated perfused liver preparation, Am. J. Physiol. 184: 593–598 (1956).

    PubMed  CAS  Google Scholar 

  9. S. Keiding and P.B. Andreasen, Hepatic clearance measurements and pharmacokinetics, Pharmacology 19: 105–110 (1979).

    Article  PubMed  CAS  Google Scholar 

  10. K.B. Bischoff and R.L. Dedrick, Thiopental pharmacokinetics, J. Pharm. Sci. 57: 1346–1351 (1968).

    Article  PubMed  CAS  Google Scholar 

  11. K.S. Pang and M. Rowland, Hepatic clearance of drugs. I. Theoretical considerations of a “well-stirred” and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood binding and hepatocellular enzyme activity on hepatic drug clearance, J. Pharmacokin. Biopharm. 5: 625–653 (1977).

    Article  CAS  Google Scholar 

  12. G.R. Wilkinson and D.G. Shand, Commentary: A physiological approach to hepatic drug clearance, Clin. Pharmacol. Ther. 18: 377–390 (1975).

    PubMed  CAS  Google Scholar 

  13. K.J. Himmelstein and R.J. Lutz, A review of the applications of physiologically based pharmacokinetic modeling, J. Pharmacokin. Biopharm. 7: 127–145 (1979).

    Article  CAS  Google Scholar 

  14. K. Winkler, L. Bass, S. Keiding and N. Tygstrup, The effect of hepatic perfusion on assessment of kinetic constants, in: “Regulation of Hepatic Metabolism,” L. Lundquist and N. Tygstrup, eds., 6th Alfred Benzon Symposium, Munksgaard, Copenhagen (1974), pp. 797–807.

    Google Scholar 

  15. B. Mannervik, Design and analysis of kinetic experiments for discrimination between rival models, in: “Kinetic Data Analysis,” L. Endrenyi, ed., Plenum Press, New York (1981), pp. 235–270.

    Google Scholar 

  16. K.S. Pang and M. Rowland, Hepatic clearance of drugs. II. Experimental evidence for acceptance of the “well-stirred” model over the “parellel tube” model using lidocaine in the perfused rat liverin situpreparation, J. Pharmacokin. Biopharm. 5: 655–679 (1977).

    Article  CAS  Google Scholar 

  17. D.G. Shand, D.M. Kornhauser and G.R. Wilkinson, Effects of route of administration and blood flow on hepatic elimination, J. Pharmacol. Exp. Ther. 195: 424–432 (1975).

    PubMed  CAS  Google Scholar 

  18. A.B. Ahmad, Ph.D. thesis, University of Bath, England (1982).

    Google Scholar 

  19. S. Keiding and E. Chiarantini, Effect of sinusoidal perfusion on galactose elimination kinetics in perfused rat liver, J. Pharmacol. Exp. Ther. 205: 465–470 (1978).

    PubMed  CAS  Google Scholar 

  20. T.W. Guentert and S. Øie, Effect of plasma protein binding on quinidine kinetics in the rabbit, J. Pharmacol. Exp. Ther. 215: 165–171 (1980).

    PubMed  CAS  Google Scholar 

  21. A.B. Ahmad, P.N. Bennett and M. Rowland, The influence of varying arterial flow contributing to the perfused rat liver on systemic availability of lignocaine, Brit. J. Pharmacol. 74:244P–245P (1981).

    Google Scholar 

  22. R.H. Kardon and R.G. Kessel, Three-dimensional organization of the hepatic microcirculation in the rodent as observed by scanning electron microscopy of corrosion casts, Gastroenterology 79: 72–81 (1980).

    PubMed  CAS  Google Scholar 

  23. K.S. Pang and J.A. Terrell, Retrograde perfusion to probe the heterogeneous distribution of hepatic drug metabolizing enzymes in rats, J. Pharmacol. Exp. Ther. 216: 339–346 (1981).

    PubMed  CAS  Google Scholar 

  24. L. Bass, P. Robinson and A.J. Bracken, Hepatic elimination of flowing substances: the distributed model, J. Theoret. Biol. 72: 161–184 (1978).

    Article  CAS  Google Scholar 

  25. F. Kiel, Dynamics of renal proximal tubular secretion, Nature 189: 927–928 (1961).

    Article  Google Scholar 

  26. S. Øie and L.Z. Benet, Altered drug disposition in disease states, Ann. Rep. Med. Chem. 15: 277–287 (1980).

    Article  Google Scholar 

  27. L.G. Wesson, A theoretical analysis of urea excretion by the mammalian kidney, Amer. J. Physiol. 179: 364–371 (1954).

    CAS  Google Scholar 

  28. W.L. Shary, Ph.D. thesis, University of Manchester, England (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Rowland, M. (1984). Clearance — Models, Validation and Implications. In: Benet, L.Z., Levy, G., Ferraiolo, B.L. (eds) Pharmacokinetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2799-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2799-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9725-3

  • Online ISBN: 978-1-4613-2799-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics