Skip to main content
Log in

Influence of plasma protein binding kinetics on hepatic clearance assessed from a “tube” model and a “well-stirred” model

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The potential influence of protein binding kinetics on elimination from liver sinusoids was evaluated by means of a “well-stirred” model (I) and a “tube” model (II). When the dissociation rate constant (k−1) is at the estimated maximum, equilibrium is maintained during the passage of drug through the eliminating organ, and hence dissociation as such has no limiting effect on elimination. When, however, k−1 is at the estimated minimum, equilibrium is not maintained, the unbound fraction is reduced during the passage, and a significant decrease in the extraction ratio occurs when the unbound fraction is 0.01 or less. The models were furthermore used to investigate the effect of saturation, of both the binding protein and the elimination process, on elimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Kr:uger-Thiemer, W. Diller, and P. B:unger. Pharmacokinetic models regarding protein binding of drugs.Antimicrob. Agents Chemother. 1965:183–191 (1966).

    Google Scholar 

  2. B. K. Martin. Kinetics of elimination of drugs possessing high affinity for the plasma proteins.Nature 207:959–960 (1965).

    Article  CAS  PubMed  Google Scholar 

  3. J. J. Coffey, F. J. Bullock, and P. T. Schoenemann. Numerical solution of nonlinear pharmacokinetic equations: effects of plasma protein binding on drug distribution and elimination.J. Pharm. Sci. 60:1623–1628 (1971).

    Article  CAS  PubMed  Google Scholar 

  4. J. G. Wagner. Simple model to explain effects of plasma protein binding and tissue binding on calculated volumes of distribution, apparent elimination rate constants and clearances.Eur. J. Clin. Pharmacol. 10:425–432 (1976).

    Article  CAS  PubMed  Google Scholar 

  5. P. J. McNamara, G. Levy, and M. Gibaldi. Effect of plasma protein and tissue binding on the time course of drug concentration in plasma.J. Pharmacokin. Biopharm. 7:195–206 (1979).

    Article  CAS  Google Scholar 

  6. K. B. Bischoff and R. L. Dedrick. Thiopental pharmacokinetics.J. Pharm. Sci. 57:1346–1351 (1968).

    Article  CAS  PubMed  Google Scholar 

  7. M. Rowland, L. Z. Benet, and G. G. Graham. Clearance concepts in pharmacokinetics.J. Pharmacokin. Biopharm. 1:123–135 (1973).

    Article  CAS  Google Scholar 

  8. G. R. Wilkinson and D. G. Shand. A physiological approach to hepatic drug clearance.Clin. Pharmacol. Ther. 18:377–390 (1975).

    CAS  PubMed  Google Scholar 

  9. K. S. Pang and M. Rowland. Hepatic clearance of drugs. I. Theoretical considerations of a “well-stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma, and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance.J. Pharmacokin. Biopharm. 5:625–653 (1977).

    Article  CAS  Google Scholar 

  10. K. Winkler, L. Bass, S. Keiding, and N. Tygstrup. The effect of hepatic perfusion on assessment of kinetic constants. In F. Lundquist and N. Tygstrup (eds.),Alfred Benzon Symposium VI: Regulation of Hepatic Metabolism, Munksgaard, Copenhagen, 1974, pp. 797–807.

    Google Scholar 

  11. L Bass, S. Keiding, K. Winkler, and N. Tygstrup. Enzymatic elimination of substrates flowing through the intact liver.J. Theor. Biol. 61:393–409 (1976).

    Article  CAS  PubMed  Google Scholar 

  12. H. Gutfreund.Enzymes: Physical Principles. Wiley-Interscience, London, 1972, p. 158.

    Google Scholar 

  13. C. A. Goresky. A linear method for determining liver sinusoidal and extravascular volumes.Am. J. Physiol. 204:626–640 (1963).

    CAS  PubMed  Google Scholar 

  14. R. W. Flower and B. F. Hochheimer. Clinical technique and apparatus for simultaneous angiography of retinal and choroidal circulations.Invest. Opththalmol. 12:248–261 (1973).

    CAS  Google Scholar 

  15. G. R. Cherrick, S. W. Stein, C. M. Leevy, and C. S. Davidson. Indocyanine green: observations on its physical properties, plasma decay, and hepatic extraction.J. Clin. Invest. 39:592–600 (1960).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. J. Caesar, S. Shaldon, L. Chiandussi, L. Guevara, and S. Sherlock. The use of indocyanine green in the measurement of hepatic blood flow and as a test of hepatic function.Clin. Sci. 21:43–57 (1961).

    CAS  PubMed  Google Scholar 

  17. C. M. Leevy, C. L. Mendenhall, W. Lesko, and M. M. Howard. Estimation of hepatic blood flow with indocyanine green.J. Clin. Invest. 41:1169–1179 (1962).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. L. Vettore, G. Falezza, M. C. de Matteis, G. Cetto, and M. Zandegiacomo. A new method for the determination of sodium and potassium in human red blood cells, using indocyanine green as a marker for trapped plasma.Clin. Chim. Acta 55:345–351 (1974).

    Article  CAS  PubMed  Google Scholar 

  19. K. J. Baker. Binding of sulfobromophthalein (BSP) sodium and indocyanine green (ICG) by plasmaα 1-lipoproteins.Proc. Soc. Exp. Biol. Med. 122:957–963 (1966).

    Article  CAS  PubMed  Google Scholar 

  20. S. D. Stroupe and U. Westphal. Steroid-protein interactions. Stopped-flow fluorescence studies of the interaction between steroid hormones and progesterone-binding globulin.J. Biol. Chem. 250:8735–8739 (1975).

    CAS  PubMed  Google Scholar 

  21. F. B. Freedman and J. A. Johnson. Equilibrium and kinetic properties of the Evans blue-albumin system.Am. J. Physiol. 216:675–681 (1969).

    CAS  PubMed  Google Scholar 

  22. A. Froese and A. H. Sehon. Kinetic studies of protein-dye and antibody-hapten interactions with the temperature-Jump method.Can. J. Chem. 40:1786–1797 (1962).

    Article  CAS  Google Scholar 

  23. J. A. Jansen. Kinetics of the binding of salicylazosulfapyridine to human serum albumin.Acta Pharmacol. Toxicol. 41:401–416 (1977).

    Article  CAS  Google Scholar 

  24. R. D. Gray and S. D. Stroupe. Kinetics and mechanism of bilirubin binding to human serum albumin.J. Biol. Chem. 253:4370–4377 (1978).

    CAS  PubMed  Google Scholar 

  25. K. Kramer, K. Thurau, and P. Deetjen. Hämodynamik des Nierenmarks. I. Mitteilung. Cappilläre Passagezeit, Blutvolumen, Durchblutung, Gewebshämatokrit und O2-Verbrauch des Nierenmarks in Situ.Pflugers Arch. Ges. Physiol. 270:251–269 (1960).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, J.A. Influence of plasma protein binding kinetics on hepatic clearance assessed from a “tube” model and a “well-stirred” model. Journal of Pharmacokinetics and Biopharmaceutics 9, 15–26 (1981). https://doi.org/10.1007/BF01059340

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01059340

Key words

Navigation