Skip to main content

Quantum Fluctuations as Corrections to Slowly Varying Quantities

  • Chapter
Quantum Electrodynamics and Quantum Optics

Part of the book series: NATO ASI Series ((ASIB,volume 110))

  • 457 Accesses

Abstract

One of the more intriguing questions in physics concerns the relation between quantum mechanics and classical mechanics, which is usually regarded as the limiting behaviour when Planck’s constant K can be regarded as small in some sense. The usual semiclassical approximation of quantum theory does not in any natural way lead to classical trajectories and the expansion K is rather singular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bambini, A., and Stenholm, S., 1979, Quantum description of free-electrons in the laser, Opt. Comm., 30: 391.

    Article  ADS  Google Scholar 

  • Bloch, C., 1958, Sur la théorie des perturbations des états lies, Nuclear Phys., 6: 329.

    Article  ADS  Google Scholar 

  • Bogoliubov, N.N., 1967, Part 4.5, Perturbation theory for a degenerate level, in.: “Lectures on Quantum Statistics, Vol. 1”, Gordon and Breach, New York.

    Google Scholar 

  • Carmichael, H.J., and Walls, D.F., 1976a, Proposal for the measurement of the resonant Stark effect by photon correlation techniques, J. Phys. B9: L43.

    MathSciNet  ADS  Google Scholar 

  • Carmichael, H.J. and Walls, D.F., 1976b. A quantum-mechanical master equation treatment of the dynamic Stark effect, J. Phys. B9: 1199.

    MathSciNet  ADS  Google Scholar 

  • Cohen-Tannoudji., C., 1977, Atoms in strong resonant fields, in.: “Frontiers in Laser Spectroscopy”, R. Bailian, S. Haroche and S. Liberman eds., North Holland, Amsterdam.

    Google Scholar 

  • Cook, R.J., 1980a, Theory of resonance radiation pressure, Phys. Rev., A22: 1078.

    ADS  Google Scholar 

  • Cook, R.J., 1980b, Photon statistics in resonance fluorescence from laser deflection of an atomic beam, Opt. Comm., 35: 347.

    Article  ADS  Google Scholar 

  • Dohm, V., 1976, Exact steady-state solution of the quantum-mechanical single-mode laser model, Phys.Rev., A14: 393.

    Article  ADS  Google Scholar 

  • Glauber, R.J., 1963, Coherent and incoheret states of the radiation field, Phys. Rev., 131: 2766.

    Article  MathSciNet  ADS  Google Scholar 

  • Gordon, J.P., and Ashkin, A., 1980, Motion of atoms in a radiation trap, Phys. Rev., A21: 1606.

    Article  ADS  Google Scholar 

  • Haake, F., and Lewenstein, M., 1983, Adibatic expansion for the single-mode laser, Phys. Rev., A27: 1013.

    Article  MathSciNet  ADS  Google Scholar 

  • Haken, H., 1975, Cooperative phenomena in systems far from thermal equilibrium and nonphysical systems, Rev. Mod. Phys., 47: 67.

    Article  MathSciNet  ADS  Google Scholar 

  • Haken H., 1977, Chapter 7, Self-organization, in: “Synergetics”, Springer-Verleg, Heidelberg.

    Google Scholar 

  • Javanainen, J., and Stenholm, S., 1980a, Broad band resonant light pressure I: Basic equations, Appl. Phys., 21: 35.

    Article  ADS  Google Scholar 

  • Javanainen, J., and Stenholm, S., 1980b, Laser cooling of trapped particles I: The heavy particle limit, Appl. Phys. 21: 283.

    Article  ADS  Google Scholar 

  • Javanainen, J., and Stenholm, S., 1981, Laser cooling of trapped particles II: The fast particle limit, Appl. Phys., 24: 71.

    Article  ADS  Google Scholar 

  • Kazantsev, A.P., 1974, Recoil effect in a strong resonant field, Sov.Phys. JETP., 40: 825.

    ADS  Google Scholar 

  • Kazantsev, A.P., 1978, Resonant light pressure, Sov. Phys. Uspehki., 21: 58.

    Article  ADS  Google Scholar 

  • Kazantsev, A.P., and Surdutovich, G.I., 1969, The quantum theory of the laser, Sov. Phys, JETP., 29: 1075.

    ADS  Google Scholar 

  • Letokhov, V.S., and Minogin, V.G., 1981, Laser radiation pressure on free atoms, Phys. Reps., 73: 1.

    Article  ADS  Google Scholar 

  • Mandel, L., 1979, Sub-Poissonian photon statistics in resonance fluorescence, Opt. Lett., 4: 205.

    Article  ADS  Google Scholar 

  • Minogin, V.G., 1980, Kinetic equation for atoms interacting with laser radiation, Sov. Phys. JETP., 52: 1032.

    ADS  Google Scholar 

  • Minogin, V.G., 1981, Kinetic theory of the scattering of atoms by a resonant standing light wave, Sov.Phys. JETP., 53: 1164.

    Google Scholar 

  • Nayfeh, N., 1973, “Perturbation Methods”, J. Wiley, New York.

    Google Scholar 

  • Pawula, R.F., 1967, Approximation of the linear Boltzmann equation by the Fokker-Planck equation, Phys.Rev., 162: 186.

    Article  ADS  Google Scholar 

  • Sargent III, M., Scully, M.O., and Lamb, Jr., W.E., 1974, “Laser Physics”, Addison Wesley, New York.

    Google Scholar 

  • Short, R., and Mandel, L., 1983, Observation of sub-Poissonian photon statistics, Phys. Rev.Lett., 51: 384.

    Article  ADS  Google Scholar 

  • Stenholm, S., 1973, Quantum theory of electro-magnetic fields interacting with atoms and molecules, Phys. Reps., 6: 1.

    Article  ADS  Google Scholar 

  • Stenholm, S., 1983a, Distribution of photons and atomic momentum in resonance fluorescence, Phys. Rev., A27: 2513.

    Article  ADS  Google Scholar 

  • Stenholm, S., 1983b, Physical applications of photon momentum, Invited talk at SICOLS ’83, Interlaken, Switzerland.

    Google Scholar 

  • Stenholm, S., and Bambini, A., 1981, Single-particle theory of the free-electron laser in a moving frame, IEEE J.Q. Electronics., QE-17: 1363.

    Google Scholar 

  • Titulaer, U.M., 1978, A systematic solution procedure for the Fokker-Planck equation of a Brownian particle in the high-friction case, Physica., 91A: 321.

    Article  MathSciNet  Google Scholar 

  • Titulaer, U.M., 1980a, The Chapman-Enskog procedure as a form of degenerate perturbation theory, Physica., 100A: 234.

    Article  MathSciNet  Google Scholar 

  • Titulaer, U.M., 1980b, Corrections to the Smoluchowski equation in the presence of hydrodynamic interactions, Physica., 100A: 251.

    Article  MathSciNet  Google Scholar 

  • Zubairy, M.S., Sargent III, M., and De Martini, F., 1983, Quantum theory of laser and optical-bistability instabilities, Opt.Lett., 8: 76.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plednum Press, New York

About this chapter

Cite this chapter

Stenholm, S. (1984). Quantum Fluctuations as Corrections to Slowly Varying Quantities. In: Barut, A.O. (eds) Quantum Electrodynamics and Quantum Optics. NATO ASI Series, vol 110. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2783-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2783-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9717-8

  • Online ISBN: 978-1-4613-2783-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics