Skip to main content
Log in

Laser cooling of trapped particles II

The fast particle limit

  • Photophysics, Laser Chemistry
  • Published:
Applied physics Aims and scope Submit manuscript

Abstract

We consider cooling of a trapped particle in the limit when the position and velocity variables do not change adiabatically. The slowly varying quantity in a harmonic trap is then the energy, and a representation based on oscillator eigenstates is used. For large excitation, fast particles, a Fokker-Planck expansion is obtained which is valid when our adiabatic description breaks down. Estimates of the initial cooling rate are given and compared with earlier results. Our treatment requires a large number of oscillator states to be coupled by each one-photon process, and in this limit the diffusion will make the expansion invalid towards the end of the cooling; our physical interpretation is that particles leak out of the trap. The opposite case, the Lamb-Dicke regime, is advantageous for cooling experiments, and then a difference equation replaces the Fokker-Planck equation of the present paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J.Wineland, H.Dehmelt: Bull. Am. Phys. Soc.20, 637 (1975)

    Google Scholar 

  2. D.J.Wineland, R.E.Drullinger, F.L.Walls: Phys. Rev. Lett.40, 1639 (1978); R.E.Drullinger, D.J.Wineland: InLaser Spectroscopy IV, ed. by H.Walther and K.W.Rothe, Springer Ser. Opt. Sci.21 (Springer, Berlin, Heidelberg, New York 1979)

    Article  ADS  Google Scholar 

  3. W.Neuhauser, M.Hohenstatt, P.Toschek, H.Dehmelt: Phys. Rev. Lett.41, 321 (1978); Appl. Phys.17, 123 (1978); and inLaser Spectroscopy IV, see [2]

    Article  Google Scholar 

  4. J.Javanainen, S.Stenholm: Appl. Phys.21, 35 (1980);21, 163 (1980)

    Article  ADS  Google Scholar 

  5. V.S.Letokhov, V.G.Minogin, B.D.Pavlik: Sov. Phys. JETP45, 698 (1977); V.S.Letokhov, V.G.Minogin: Sov. Phys. JETP47, 690 (1978)

    Google Scholar 

  6. B.L.Zhelnov, A.P.Kazantsev, G.I.Surdutovich: Sov. J. Quantum Electron.7, 499 (1977)

    Article  Google Scholar 

  7. R.J.Cook: Phys. Rev. A20, 224 (1979);21, 268 (1980); Phys. Rev. Lett.44, 976 (1980)

    Article  ADS  Google Scholar 

  8. E.Arimondo, H.Lew, TakeshiOka: Phys. Rev. Lett.43, 753 (1979)

    Article  ADS  Google Scholar 

  9. V.I.Balykin, V.S.Letokhov, V.I.Mushin: JETP Lett.29, 560 (1979)

    ADS  Google Scholar 

  10. D.J.Wineland, W.M.Itano: Phys. Rev. A20, 1527 (1979)

    Article  ADS  Google Scholar 

  11. J.Javanainen, S.Stenholm: Appl. Phys.21, 283 (1980)

    Article  ADS  Google Scholar 

  12. S.Stenholm: Invited talk at ICOMP 2 Budapest, April 14–18, 1980 (to appear)

  13. J.Javanainen: Appl. Phys.23, 175 (1980)

    Article  ADS  Google Scholar 

  14. L.D.Landau, L.M.Lifshitz:Quantum Mechanics (Pergamon Press, Oxford 1958)

    MATH  Google Scholar 

  15. G.N.Watson:Theory of Bessel Functions, 2nd ed. (Cambridge University Press, Cambridge 1958)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Javanainen, J., Stenholm, S. Laser cooling of trapped particles II. Appl. Phys. 24, 71–84 (1981). https://doi.org/10.1007/BF00900402

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00900402

PACS

Navigation