Skip to main content

Molecular Mechanisms in Genetic Stability and Change: The Role of Deoxyribonucleotide Pool Balance

  • Chapter
Genetic Consequences of Nucleotide Pool Imbalance

Part of the book series: Basic Life Sciences ((BLSC,volume 31))

Abstract

For both theoretical and practical reasons, elucidation of the dialectical processes of genetic stability and change is one of the central problems of biology. The molecular basis of evolution resides in the intimately associated mechanisms of heredity and mutagenesis, which together have led gradually to the accumulation of a vast store of genetic variation within gene pools. Although the actual course of evolution is mediated by natural selection, in the absence of variation, selection can do nothing [7]. Heredity is a manifestation of the stability of genes from one generation to the next. It is necessary for the formation of normal progeny, and for the integrity and longevity of species. Genetic variation is a manifestation of the instability of genes, and of the ‘fluidity’ of the genome. It is responsible, ultimately, for the origin of species, but more immediately, for a substantial number of serious human diseases, including cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. N. Ames, Dietary carcinogens and anticarcinogens, Science, 221: 1256 – 64 (1983).

    Article  PubMed  CAS  Google Scholar 

  2. C. Auerbach and J. M. Robson, The production of mutations by chemical substances, Proc. Roy. Soc. Edinburgh, B62: 271 – 283 (1947).

    Google Scholar 

  3. B. J. Barclay, B. A. Kunz, J. G. Little, and R. H. Haynes, Genetic and biochemical consequences of thymidylate stress, Can. J. Biochem., 60: 172 – 194 (1982).

    CAS  Google Scholar 

  4. B. J. Barclay and J. G. Little, Mutation induction in yeast by deoxythymidine monophosphate: A model, Molec. Gen. Genet., 181: 279 – 281 (1981).

    Article  CAS  Google Scholar 

  5. J. F. Crow and M. Kimura, Evolution in sexual and asexual populations, Amer. Nat., 99: 439 – 449 (1965).

    Article  Google Scholar 

  6. D. Brutlag and A. Kornberg, Enzymatic synthesis of deoxyribonucleic acid. XXXVI. A proofreading function for the 3T‘→5’- exonuclease activity in deoxyribonucleic acid polymerases, J. Biol. Chem., 247: 241 – 248 (1972).

    PubMed  CAS  Google Scholar 

  7. C. R. Darwin, On the origin of Species by Means of Natural Selection, 1st Edition, John Murray, London (1859), p. 82.

    Google Scholar 

  8. S. K. Das, E. P. Benditt, and L. A. Loeb, Rapid changes in deoxynucleoside triphosphate pools in mammalian cells treated with mutagens, Biochem. Biophys. Res. Comm., 114: 458 - 464 (1983)

    Article  PubMed  CAS  Google Scholar 

  9. M. Demerec, Frequency of spontaneous mutations in certain stocks of Drosophila melanogaster, Genetics, 22: 469 – 478 (1937).

    PubMed  CAS  Google Scholar 

  10. J. W. Drake, The role of mutation in microbial evolution, Symp. Soc. Gen. Microbiol., 24: 41 – 58 (1974).

    CAS  Google Scholar 

  11. J. W. Drake, Fundamental mutagenic mechanisms and their significance for environmental mutagenesis, in: Progress in Genetic Toxicology (D. Scott, B. A. Bridges, and F. H. Sobels, eds.), Elsevier/North Holland, Amsterdam (1977), pp. 43–55

    Google Scholar 

  12. J. W. Drake and R. H. Baltz, The biochemistry of mutagenesis, Ann. Rev. Biochem., 45: 11 – 37 (1976).

    Article  PubMed  CAS  Google Scholar 

  13. F. Eckardt and R. H. Haynes, Quantitative measures of mutagenicity and mutability based on mutant yield data, Mutat. Res. 74: 439 – 458 (1980).

    CAS  Google Scholar 

  14. F. Eckardt, B. A. Kunz, and R. H. Haynes, Variation of mutation and recombination frequencies over a range of thymidylate concentrations in a diploid thymidylate auxotroph, Curr. Genet. 7: 399 – 402 (1983).

    Article  CAS  Google Scholar 

  15. F. Eckardt, E. Moustacchi, and R. H. Haynes, On the inducibility of error-prone repair in yeast, in: DNA Repair Mechanisms (P. C. Hanawalt, E. C. Friedberg, and C. F. Fox, eds.), Academic Press, New York (1978), pp. 421 – 423.

    Google Scholar 

  16. F. Eckardt, S.-J. Teh, and R. H. Haynes, Heteroduplex repair as an intermediate step in UV mutagenesis in yeast, Genetics, 95: 63 – 80 (1980).

    PubMed  CAS  Google Scholar 

  17. M. Eigen and P. Schuster, The Hypercycle, Springer-Verlag, Berlin (1979).

    Book  Google Scholar 

  18. B. W. Glickman and M. Radman, E. colimutator mutants deficient in methylation instructed mismatch correction, Proc. Natl. Acad. Sci. U.S.A., 77: 1063 – 1067 (1980).

    Article  PubMed  CAS  Google Scholar 

  19. P. C. Hanawalt, P. K. Cooper, A. K. Ganesan, and C. A. Smith, DNA repair in bacteria and mammalian cells, Ann. Rev. Biochem., 48: 783 – 836 (1979).

    Article  PubMed  CAS  Google Scholar 

  20. P. J. Hastings, S.-K. Quah, and R. C. von Borstel, Spontaneous mutation by mutagenic repair of spontaneous lesions in DNA, Nature, 264: 719 – 722 (1976).

    Article  PubMed  CAS  Google Scholar 

  21. R. H. Haynes and F. Eckardt, Analysis of dose-response patterns in mutation research, Can. J. Genet. Cytol., 21: 277 – 302 (1979).

    PubMed  CAS  Google Scholar 

  22. R. H. Haynes, F. Eckardt, and B. A. Kunz, The DNA damage-repair hypothesis in radiation biology: Comparison with classical hit theory, Brit. J. Cancer, 49 (Suppl. VI): 81 – 90 (1984).

    Google Scholar 

  23. R. H. Haynes and B. A. Kunz, DNA repair and mutagenesis in yeast, in: Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance (J. N. Strathern, E. W. Jones, and J. R. Broach, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1981), pp. 371–414

    Google Scholar 

  24. J. Holland, K. Spindler, F. Horodyski, E. Graham, S. Nichol, and S. Vandepol, Rapid evolution of RNA genomes, Science, 215: 1577 – 1585 (1982).

    Article  PubMed  CAS  Google Scholar 

  25. W. Johannsen, Elemente der exakten Erblichkeitslehre, Carl Fischer, Jena (1909).

    Google Scholar 

  26. M. Kimura, On the evolutionary adjustment of spontaneous mutation rates, Genet. Res. Camb., 9: 23 – 34 (1967).

    Article  Google Scholar 

  27. T. A. Kunkel and L. A. Loeb, Fidelity of mammalian DNA polymerases, Science, 213: 765 – 767 (1981).

    Article  PubMed  CAS  Google Scholar 

  28. T. A. Kunkel, R. R. Meyer, and L. A. Loeb, Single-strand binding protein enhances fidelity of DNA synthesis in vitro, Proc. Natl. Acad. Sci. U.S.A., 76: 6331 – 6335 (1979).

    Article  PubMed  CAS  Google Scholar 

  29. B. A. Kunz, Genetic effects of deoxyribonucleotide pool imbalance, Environ. Mutagen., 4: 695 – 725 (1982).

    CAS  Google Scholar 

  30. B. A. Kunz, B. J. Barclay, J. C. Game, J. G. Little, and R. H. Haynes, Induction of mitotic recombination in yeast by starvation for thymine nucleotides, Proc. Natl. Acad. Sci. U.S.A., 77: 6057 – 6061 (1980).

    Article  PubMed  CAS  Google Scholar 

  31. B. A. Kunz and R. H. Haynes, DNA repair and the genetic effects of thymidylate stress in yeast, Mutat. Res., 93: 353 – 375 (1982).

    Article  CAS  Google Scholar 

  32. E. G. Leigh, The evolution of mutation rates, Genetics Supplement, 73s: 1 – 18 (1973).

    Google Scholar 

  33. L. A. Loeb and T. A. Kunkel, Fidelity of DNA synthesis, Ann. Rev. Biochem., 52: 429 – 457 (1982).

    Article  Google Scholar 

  34. K. L. Maus, E. M. Mcintosh, and R. H. Haynes, Defective dCMP deaminase confers a mutator phenotype on Saccharomyces cerevisiae, Environ. Mutagen., 6: 415 (1984).

    Google Scholar 

  35. M. Meuth and N. L’Heureux-Huard, Characterization of a mutator gene in Chinese hamster ovary cells, Proc. Natl. Acad. Sci. U.S.A., 76: 6505 – 6509 (1979).

    Article  PubMed  CAS  Google Scholar 

  36. H. J. Muller, Our load of mutations, Am. J. Hum. Genet., 2: 111 – 176 (1950).

    PubMed  CAS  Google Scholar 

  37. H. J. Muller, The nature of the genetic effects produced by radiation, in: Radiation Biology, Vol. I, Part I (A. Hollaender, ed.), McGraw–Hill Book Co. Inc., New York (1954), p. 417

    Google Scholar 

  38. H. J. Muller and E. Attenburg, The rate of change of hereditary factors in Drosophila, Proc. Soc. Exptl. Biol. Med., 17: 10 – 14 (1919).

    Google Scholar 

  39. N. Muzyczka, R. L. Roland, and M. J. Bessman, Studies on the biochemical basis of spontaneous mutation, J. Biol. Chem., 247: 7116 – 7122 (1972).

    PubMed  CAS  Google Scholar 

  40. P. Nevers and H.-C. Spatz, Escherichia coli mutants uvrDand uvrEdeficient in gene conversion of λ-heteroduplexes, Molec. Gen. Genet., 139: 237 – 243 (1975).

    Google Scholar 

  41. C. N. Newman and J. H. Miller, Mutagen-induced changes in cellular deoxycytidine triphosphate and thymidine triphosphate in Chinese hamster ovary cells, Biochem. Biophys. Res. Comm., 114: 34 – 40 (1983).

    CAS  Google Scholar 

  42. B. Nicander and P. Reichard, Dynamics of pyrimidine deoxynucleoside triphosphate pools in relationship to DNA synthesis in 3T6 mouse fibroblasts, Proc. Natl. Acad. Sci. U.S.A., 80: 1347 – 1351 (1983).

    Article  PubMed  CAS  Google Scholar 

  43. J. Ninio, Approaches Moleculaires de l’Evolution, Mason, Paris (1978).

    Google Scholar 

  44. M. Radman, Molecular mechanisms of mutagenesis: a summary review, in: Conference on Structural Pathology in DNA and the Biology of Ageing (Deutsche Forschungsgemeinschaft), H. Boldt Verlag, Boppard (1980), p. 21 – 26.

    Google Scholar 

  45. D. C. Reanney, D. G. MacPhee, and J. Pressing, Intrinsic noise and the design of the genetic machinery, Aust. J. Biol. Sci., 36: 77 – 91 (1983).

    PubMed  CAS  Google Scholar 

  46. G. P. V. Reddy and A. B. Pardee, Multienzyme complex for metabolic channeling in mammalian DNA replication, Proc. Natl. Acad. Sci. U.S.A., 77: 3312 – 3316 (1980).

    Article  CAS  Google Scholar 

  47. W. Seide, F. Eckardt, and M. Brendel, Analysis of mutagenic DNA repair in a thermoconditional repair mutant of Saccharomyces cerevisiae, Molec. Gen. Genet., 190: 406 – 412 (1983).

    Google Scholar 

  48. L. Skoog and B. Nordenskjold, Effects of hydroxyurea and 1-β-d arabinofuranosyl cytosine on deoxyribonucleotide pools in mouse embryo cells, Eur. J. Biochem., 19: 81 – 89 (1971).

    Article  PubMed  CAS  Google Scholar 

  49. L. Thelander and P. Reichard, Reduction of ribonucleotides, Ann. Rev. Biochem., 48: 133 – 58 (1979).

    Article  PubMed  CAS  Google Scholar 

  50. N. W. Timoféeff-Ressovsky, K. G. Zimmer, and M. Delbruck, Über die Natur den Genmutation und der Genstrucktur., Nachr. Ges. Wiss. Gottingen, 1: 189 – 245 (1935).

    Google Scholar 

  51. G. S. Villani, S. Boiteux, and M. Radman, Mechanism of ultraviolet-induced mutagenesis. Extent and fidelity of in vitroDNA synthesis on irradiated templates, Proc. Natl. Acad. Sci. U.S.A., 75: 3037 – 3041 (1978).

    Article  PubMed  CAS  Google Scholar 

  52. G. Weinberg, B. Ullman, and D. W. Martin, Mutator phenotypes in mammalian cell mutants with distinct biochemical defects and abnormal deoxyribonucleoside triphosphate pools, Proc. Natl. Acad. Sci. U.S.A., 78: 2447 – 2451 (1981).

    Article  PubMed  CAS  Google Scholar 

  53. E. M. Witkin, Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli, Bacteriol. Rev., 40: 869 – 907 (1976).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Haynes, R.H. (1985). Molecular Mechanisms in Genetic Stability and Change: The Role of Deoxyribonucleotide Pool Balance. In: de Serres, F.J. (eds) Genetic Consequences of Nucleotide Pool Imbalance. Basic Life Sciences, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2449-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2449-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9488-7

  • Online ISBN: 978-1-4613-2449-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics