Skip to main content

A Model for Decision Making in the Insect Nervous System

  • Chapter
Nervous Systems in Invertebrates

Abstract

Little is known about the neuronal mechanisms for selecting behavioural outputs appropriate to ongoing conditions. We present a model in which decisions are made by a concensus between the inputs at each stage in the system, not by a few neurones in a single centre. The stages are interconnected by loops of varying lengths, each with specific control functions. Neuromodulators and hormones contribute to the overall output by altering excitability but no single input is necessary and sufficient for producing any output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman JS (1981) Functional organisation of insect ganglia. Adv Physiol Sci 23: 537–555.

    Google Scholar 

  • Altman JS, Kien J (1985) The anatomical basis for intersegmental and bilateral coordination in locusts. In: Bush B, Clarac F (eds) S.E.B. Seminar Series, 24, Cambridge Univ Press, Cambridge, pp 91–119.

    Google Scholar 

  • Altman GS, Kien J (1986) Functional organisation of the suboesophageal ganglion in insects and other arthropods. In: Gupta AP (ed) Arthropod brain: its evolution, development, structure and functions. John Wiley and Sons, NY (in press).

    Google Scholar 

  • Bacon JP, Möhl B (1983) The tritocerebral commissure giant (TCG) wind-sensitive interneuron in the locust. I. Its activity in straight flight. J Comp Physiol 150: 439–452.

    Article  Google Scholar 

  • Bacon JP, Strausfeld NJ (1986) The dipteran ‘giant fibre’ pathway: neurons and signals. J Comp Physiol 158: 527–548.

    Article  Google Scholar 

  • Bacon JP, Tyrer M (1979) Wind interneurone input to flight motorneurones in the locust, Schistocerca gregaria. Naturwiss 66: 116.

    Article  Google Scholar 

  • Bässler U, Foth E, Breutel C (1985) The inherent walking directions differ for the prothoracic and mesothoracic legs of stick insects. J Exp Biol 116: 301–311.

    Google Scholar 

  • Blasdel GG, Salama G (1986) Voltage-sensitive dyes reveal a modular organisation in monkey striate cortex. Nature 321: 579–585.

    Article  PubMed  CAS  Google Scholar 

  • Boyan GS, Altman JS (1985) The suboesophageal ganglion: A “missing link” in the auditory pathway of the locust. J Comp Physiol 156: 413–428.

    Article  Google Scholar 

  • Burrows M, Rowell CHF (1973) Connections between descending visual interneurons and metathoracic motoneurons in the locust. J Comp Physiol 85: 221–234.

    Article  Google Scholar 

  • Cobb JLS (1987) Neurobiology of the Echinodermata. (This volume)

    Google Scholar 

  • Croll RP (1987) Identified neurons and cellular homologies. (This volume)

    Google Scholar 

  • Davies NT (1987) Neurosecretory neurons and their projections to the serotonin neurosecretory system of the cockroach Periplaneta americana (L.), identification of mandibular and maxillary motor neurons associated with this system. J Comp Neurol (in press).

    Google Scholar 

  • Davis WJ (1976) Organisational concepts in the central motor networks of invertebrates. Adv Behav Biol 18: 265–292.

    Google Scholar 

  • Davis WJ (1985) Central feedback loops and some implications for motor control. In: Barnes WJP, Gladden MM (eds) Feedback in motor control. Croon-Helm, London, pp 13–34.

    Google Scholar 

  • Dudai Y, Amari SI, Bienenstock E, Dehaene S, Fuster J, Goddard GV, Konishi M, Menzel R, Mishkin M, Müller CM, Rolls ET, Schwegler HH, von der Malsburg C (1987) On neural assemblies and memories. In: Changeux J-P, Konishi M (eds) Neural and molecular bases of learning. Dahlem Conference, Springer Verlag, Berlin (in press).

    Google Scholar 

  • Eaton RC, DiDomenico R (1987) Command and the neural causation of behaviour: a theoretical analysis of the necessity and sufficiency paradigm. Brain Behav Evol (in press).

    Google Scholar 

  • Erickson RP (1963) Sensory neural patterns and gustation. In: Zotterman Y (ed) Olfaction and taste. Pergamon Press, New York, pp 205–213.

    Google Scholar 

  • Evans PD, O’Shea M (1977) An octopaminergic neurone modulates neuromuscular transmission in the locust. Nature 270: 257–259.

    Article  PubMed  CAS  Google Scholar 

  • Goelet P, Castellucci VF, Schacher S, Kandel ER (1986) The long and the short of lont-term memory: a molecular framework. Nature 322: 419–421.

    Article  PubMed  CAS  Google Scholar 

  • Grinvald A, Licke E, Frostig RD, Gilbert C, Wiesel TN (1986) Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324: 361–364.

    Article  PubMed  CAS  Google Scholar 

  • Harris-Warrick RM, Flamm RE (1986) Chemical modulation of a small central pattern generator circuit. Trends Neurosci 9: 432–437.

    Article  CAS  Google Scholar 

  • Harris-Warrick RM, Kravitz EA (1984) Cellular mechanisms for modulation of posture by octopamine and serotonin in the lobster. J Neurosci 4: 1976–1993.

    PubMed  CAS  Google Scholar 

  • Heitler WJ, Burrows M (1977) The locust jump. I. The motor programme. J Exp Biol 66: 203–219.

    PubMed  CAS  Google Scholar 

  • Hoyle G (1977) Identified neurons and behavior of arthropods. Plenum, New York.

    Google Scholar 

  • Hoyle G, Colquhoun W, Williams M (1980) Fine structure of an octopaminergic neuron and its terminals. J Neurobiol 11L 103–126.

    Article  Google Scholar 

  • Huber F (1955) Sitz und Bedeutung nervöser Zentren für Instinkthandlung beim Männchen von Gryllus campestris L. Z Tierpsychol 12: 12–48.

    Article  Google Scholar 

  • Huber F (1965) Brain controlled behaviour in orthopterans. In: Treherne JE, Beament JWR (eds) The physiology of the insect central nervous system. Academic Press, London, pp 233–246.

    Google Scholar 

  • Huber F (1980) Zoologische Grundlagenforschung aus der Sicht eines Insektenbiologen. Verh Dtsch Zool Ges, 73 Jahresversammlung, pp 12–37.

    Google Scholar 

  • Kien J (1979) Variability of locust motorneuron responses to sensory stimulation: A possible substrate for motor flexibiltiy. J Comp Physiol 134: 55–68.

    Article  Google Scholar 

  • Kien J (1983) The initiation and maintenance of walking in the locust. An alternative to the command concept. Proc R Soc Lond B 219: 137–174.

    Article  Google Scholar 

  • Kien J, Altman JS (1984) Descending interneurones from the brain and suboesophageal ganglia and their role in the control of locust behaviour. J Insect Physiol 30: 59–72.

    Article  Google Scholar 

  • Kravitz EA, Glusman S, Harris-Warrick RM, Livingstone MS, Schwarz T, Goy MF (1980) Amines and a peptide as neurohormones in lobsters: Actions on neuro-muscular preparations and preliminary behavioural studies. J Exp Biol 89: 159–175.

    PubMed  CAS  Google Scholar 

  • Kupfermann I, Weiss KR (1978) The command neuron concept. Behav Brain Sci 1: 1–10.

    Article  Google Scholar 

  • Lent CM (1985) Serotonic modulation of the feeding behaviour of the medicianl leech. Brain Res Bull 14: 643–655.

    Article  PubMed  CAS  Google Scholar 

  • Menzel R, Bicker G (1987) Plasticity in neuronal circuits and assemblies of invertebrates. In: Changeux J-P, Konishi M (eds) Neural and molecular bases of learning. Dahlem Conference. Springer Verlag, Berlin (in press).

    Google Scholar 

  • Morton DB, Truman JW (1986) Substrate protein availability regulates eclosion hormone sensitivity in an insect CNS. Nature 323: 264–267.

    Article  PubMed  CAS  Google Scholar 

  • Nässei DR (1987) Aspects of the functional and chemical anatomy of the insect brain. (This volume)

    Google Scholar 

  • O’Shea M, Adams M (1981) Pentapeptide (Proctolin: Arg - Tyr - Len - Pro - Thr) associated with an identified neuron. Science 213: 567–569.

    Article  PubMed  Google Scholar 

  • Pearson KG, Heitler WJ, Steeves JD (1980) Triggering of locust jump by multimodal inhibitory interneurons. J Neurophysiol 43: 257–278.

    PubMed  CAS  Google Scholar 

  • Ramirez J-M (1983) Untersuchung der sensorischen Eingänge von multimodalen Neuronen im Unterschlundganglion der Heuschrecke (Schistocerca gregaria). Diplom-Thesis, Universität Regensburg, Regensburg.

    Google Scholar 

  • Ramirez J-M (1986) Interneuronal control of flight. Doctoral Thesis. University of Regensburg, Regensburg.

    Google Scholar 

  • Reichert H, Rowell CHF, Griss C (1985) Course correction circuitry translates feature detection into behavioural action in locusts. Nature 315: 142–144.

    Article  Google Scholar 

  • Rämy C, Girardie J (1980) Anatomical organization of two vasopressin-neurophysin-like neurosecretory cell throughout the central nervous system of the migratory locust. Gen Comp Endocrinol 40: 27–35.

    Article  Google Scholar 

  • Robertson RM (1987) Insect neurons: synaptic interactions, circuits and the control of behavior. (This volume)

    Google Scholar 

  • Rowell CHF, Pearson KG (1983) Ocellar input to the flight motor system of the locust: structure and function. J Exp Biol 103: 265–288.

    Google Scholar 

  • Rummelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536.

    Article  Google Scholar 

  • Siegelbaum SA, Camardo JS, Kandel ER (1982) Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones. Nature 299: 413–417.

    Article  PubMed  CAS  Google Scholar 

  • Siegler MVS, Burrows M (1979) The morphology of local non-spiking interneurons in the metathoracic ganglion of the locust. J Comp Neurol 183: 121–147.

    Article  PubMed  CAS  Google Scholar 

  • Sombati S, Hoyle G (1984) Generation of specific behaviors in a locust by local release into neuropil of the natural neuromodulator ocotpamine. J Neurobiol 15: 481–506.

    Article  PubMed  CAS  Google Scholar 

  • Tublitz NJ, Copenhauer PF, Taghert PM, Truman JW (1986) Peptidergic regulation of behavior: an identified neuron approach. Trends Neurosci 9: 359–363.

    Article  CAS  Google Scholar 

  • Tyrer NM, Turner J, Altman JS (1984) Identifable neurons in the locust central nervous system that react with antibodies to serotonin. J Comp Neurol 227: 313–330.

    Article  PubMed  CAS  Google Scholar 

  • Wilson DM (1962) Bifunctional muscles in the thorax of grasshoppers. J Exp Biol 39: 669–677.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Altman, J.S., Kien, J. (1987). A Model for Decision Making in the Insect Nervous System. In: Ali, M.A. (eds) Nervous Systems in Invertebrates. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1955-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1955-9_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9084-1

  • Online ISBN: 978-1-4613-1955-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics