Skip to main content

Part of the book series: Topics in the Neurosciences ((TINS,volume 8))

Abstract

A major theme in developmental neurobiology is the role of target tissues in the maintenance of the neurons that innervate those targets. During the development of the nervous system, more neurons are produced and send axons to targets than survive in the mature animal. Typically about 50% of the neurons projecting to a given structure will die during a restricted period. This has been termed naturally occurring cell death. Several lines of evidence indicate that the size of the target field is a major determinant of this cell death: Removal of the target results in greatly increased cell death, while expansion of the target decreases cell death (for reviews, see Refs. 1 and 2).

The authors thank our many colleagues who contributed the various studies mentioned in this paper. Work from the authors’ laboratories was supported by NIH grants HL20604, NS18071, and by grants from the March of Dimes Birth Defects Foundation and from Monsanto Company.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oppenheim, R.W. (1981). Neuronal cell death and some related regressive phenomena during neurogenesis. In Studies in Developmental Neurobiology: Essays in Honor of Viktor Hamburger, Cowan, W.M., ed., Oxford U.P., New York.

    Google Scholar 

  2. Cowan, W.M., Fawcett, J.W., O’Leary, D.D. and Stanfield, B.B. (1984). Regressive events in neurogenesis. Science 225, 1258–1265.

    Article  PubMed  CAS  Google Scholar 

  3. Levi-Montalcini, R. (1982). Developmental neurobiology and the natural history of nerve growth factor. Ann. Rev. Neurosci. 5, 341–362.

    Article  PubMed  CAS  Google Scholar 

  4. Thoenen, H. and Barde, Y.A. (1980). Physiology of nerve growth factor. Physiol. Rev. 60, 1284–1335.

    PubMed  CAS  Google Scholar 

  5. Korsching, S. and Thoenen, H. (1983). Nerve growth factor in sympathetic ganglia and corresponding target organs of the rat: Correlation with density of sympathetic innervation. Proc. Natl. Acad. Sci. USA 80, 3513–3516.

    Article  PubMed  CAS  Google Scholar 

  6. Shelton, D.L. and Reichardt, L.F. (1984). Expression of the ß-nerve growth factor gene correlates with the density of sympathetic innervation in effector organs. Proc. Natl. Acad. Sci. USA 81, 7951–7955.

    Article  PubMed  CAS  Google Scholar 

  7. Hendry, I.A., Stöckel, K., Thoenen, H. and Iversen, L.L. (1974). The retrograde transport of nerve growth factor. Brain Res. 68, 103–121.

    Article  PubMed  CAS  Google Scholar 

  8. Korsching, S. and Thoenen, H. (1983). Quantitative demonstration of the retrograde axonal transport of endogenous nerve growth factor. Neurosci. Lett. 39, 1–4.

    Article  PubMed  CAS  Google Scholar 

  9. Palmatier, M.A., Hartman, B.K. and Johnson, E.M., Jr. (1984). Demonstration of retro-gradely transported endogenous nerve growth factor in axons of sympathetic neurons. J. Neurosci. 4, 751–756.

    PubMed  CAS  Google Scholar 

  10. Johnson, E.M., Jr., Taniuchi, M., Clark, H.B., Springer, J.E., Koh, S., Tayrien, M.W. and Loy, R. (1987). Demonstration of the retrograde transport of nerve growth factor (NGF) receptor in the peripheral and central nervous system. J. Neurosci. 7, 923–929.

    PubMed  CAS  Google Scholar 

  11. Levi-Montalcini, R. and Booker, B. (1960). Destruction of the sympathetic ganglia in mammals by an antiserum to the nerve growth promoting factor. Proc. Natl. Acad. Sci. USA 46, 384–391.

    Article  PubMed  CAS  Google Scholar 

  12. Levi-Montalcini, R. and Angeletti, P.U. (1966). Immunosympathectomy. Pharmacol. Rev. 18, 619–628.

    PubMed  CAS  Google Scholar 

  13. Yip, H.K., Rich, K.M., Lampe, P.A. and Johnson, E.M., Jr. (1984). The effects of nerve growth factor and its antiserum on the postnatal development and survival after injury of sensory neurons in rat dorsal root ganglia. J. Neurosci. 4, 2986–2992.

    PubMed  CAS  Google Scholar 

  14. Gorin, P.D. and Johnson, E.M., Jr. (1979). Experimental autoimmune model of nerve growth factor deprivation: Effects on developing peripheral sympathetic and sensory neurons. Proc. Natl. Acad. Sci. USA 76, 5382–5386.

    Article  PubMed  CAS  Google Scholar 

  15. Gorin, P.D. and Johnson, E.M., Jr. (1980). Effects of long-term nerve growth factor deprivation on the nervous system of the adult rat: An experimental autoimmune approach. Brain Res. 198, 27–42.

    Article  PubMed  CAS  Google Scholar 

  16. Johnson, E.M., Jr., Gorin, P.D., Osborne, P.A., Rydel, R.E. and Pearson, J. (1982). Effects of autoimmune NGF deprivation in the adult rabbit and offspring. Brain Res. 240, 131–140.

    Article  PubMed  CAS  Google Scholar 

  17. Schwartz, J.P., Pearson, J. and Johnson, E.M., Jr. (1982). Effect of exposure to anti-NGF on sensory neurons of adult rats and guinea pigs. Brain Res. 244, 378–381.

    Article  PubMed  CAS  Google Scholar 

  18. Rich, K.M., Yip, H.K., Osborne, P.A., Schmidt, R.E. and Johnson, E.M., Jr. (1984). Role of nerve growth factor in the adult dorsal root ganglia neuron and its response to injury. J. Comp. Neurol. 230, 110–118.

    Article  PubMed  CAS  Google Scholar 

  19. Johnson, E.M., Jr., Gorin, P.D., Brandeis, L.D. and Pearson, J. (1980). Dorsal root ganglion neurons are destroyed by exposure in utero to maternal antibody to nerve growth factor. Science 210, 916–918.

    Article  PubMed  CAS  Google Scholar 

  20. Pearson, J., Johnson, E.M., Jr., Brandeis, L. (1983). Effects of antibodies to nerve growth factor on intrauterine development of derivatives of cranial neural crest and placode in the guinea pig. Dev. Biol. 96, 32–36.

    Article  PubMed  CAS  Google Scholar 

  21. Gershon, M.D., Rothman, T.P., Sherman, D. and Johnson, E.M. (1983). Effects of prenatal exposure to anti-NGF on the enteric nervous system (ENS) of guinea pigs. Anat. Rec. 205, 62A.

    Google Scholar 

  22. Johnson, E.M., Jr. and Manning, P.T. (1984). Guanethidine-induced destruction of sympathetic neurons. Int. Rev. Neurobiol. 25, 1–37.

    Article  PubMed  CAS  Google Scholar 

  23. Jensen-Holm, J. and Juul, P. (1971). Ultrastructural changes in the rat superior cervical ganglion following prolonged guanethidine administration. Acta. Pharm. Toxicol. 30, 308–320.

    Article  CAS  Google Scholar 

  24. Burnstock, G., Evans, B., Gannon, B.J., Heath, J. W. and James, V. (1971). A new method of destroying adrenergic nerves in adult animals using guanethidine. Br. J. Pharmacol. 43, 245–301.

    Google Scholar 

  25. Eränko, L. and Eränko, O. (1971). Effect of guanethidine on nerve cells and small intensely fluorescent cells in sympathetic ganglia of newborn and adult rats. Acta. Pharm. Toxicol. 30, 403–416.

    Article  Google Scholar 

  26. Johnson, E.M., Jr., Palmatier, M.A., Rydel, R.E. and Manning, P.T. (1986). Species and structural specificity of the lipopigment accumulation and neuronal destruction induced by N-(2-guanidinoethyl)-4-methyl-1,2,5,6 tetrahydropyridine (guanacline). Brain Res. 383, 100–109.

    Article  PubMed  CAS  Google Scholar 

  27. Palmatier, M.A., Schmidt, R.E., Plurad, S.B. and Johnson, E.M., Jr. (1987). Sympathetic neuronal destruction in macaque monkeys by guanethidine and guanacline. Ann. Neurol. 21, 46–52.

    Article  PubMed  CAS  Google Scholar 

  28. Manning, P.T., Powers, C.W., Schmidt, R.E. and Johnson, E.M., Jr. (1983). Guanethidine-induced neuronal destruction of peripheral sympathetic neurons occurs by an immune-mediated mechanism. J. Neurosci. 3, 714–724.

    PubMed  CAS  Google Scholar 

  29. Manning, P.T., Russell, J.H., Johnson, E.M., Jr. (1982). Immunosuppressive agents prevent guanethidine-induced destruction of rat sympathetic neurons. Brain Res. 241, 131–143.

    Article  PubMed  CAS  Google Scholar 

  30. Johnson, E.M. and Aloe, L. (1974). Suppression of the in vitro and in vivo cytotoxic effects of guanethidine in sympathetic neurons by nerve growth factor. Brain Res. 81, 519–532.

    Article  PubMed  CAS  Google Scholar 

  31. Manning, P.T., Russell, J.H., Simmons, B. and Johnson, E.M., Jr. (1985). Protection from guanethidine-induced neuronal destruction by nerve growth factor: Effect of NGF on immune function. Brain Res. 340, 61–69.

    Article  PubMed  CAS  Google Scholar 

  32. Baringer, J. and Swoveland, P. (1973). Recovery of herpes simplex virus from human trigeminal ganglions. N. Engl. J. Med. 288, 648–650.

    Article  PubMed  CAS  Google Scholar 

  33. Bastian, F.D., Rabson, A.S., Yee, C.L. and Tralka, T.S. (1972). Herpes hominis: Isolation from human trigeminal ganglions. Science 178, 306–307.

    Article  PubMed  CAS  Google Scholar 

  34. Warren, K.G., Brown, S.M., Wroblewska, Z., Gilden, D., Koprowski, H. and Subak-Sharpe, J. (1978). Isolation of latent herpes simplex virus from the superior cervical and vagus ganglions of human beings. N. Engl. J. Med. 298, 1068–1069.

    Article  PubMed  CAS  Google Scholar 

  35. Walz, M.A., Price, R.W. and Notkins, A.L. (1974). Latent ganglionic infection with herpes simplex virus types 1 and 2: Viral reactivation in vivo after neurectomy. Science 184, 1185–1187.

    Article  PubMed  CAS  Google Scholar 

  36. Scriba, M. (1977). Extraneural localization of herpes simplex virus in latently infected guinea pigs. Nature 267, 529–531.

    Article  PubMed  CAS  Google Scholar 

  37. Walz, M.A., Price, R.W., Hayashi, K., Katz, B.J. and Notkins, A.L. (1977). Effect of immunization on acute and latent infections of vaginouterine tissue with herpes simplex virus types 1 and 2. J. Infect. Dis. 135, 744–752.

    Article  PubMed  CAS  Google Scholar 

  38. Price, R.W. (1979). 6-hydroxydopamine potentiates acute herpes simplex virus infection of the superior cervical ganglion in mice. Science 205, 518–520.

    Article  PubMed  CAS  Google Scholar 

  39. Blyth, W. A., Hill, T.J., Field, H.J. and Harbour, D. A. (1976). Reactivation of herpes simplex virus infection by ultraviolet light and possible involvements of prostaglandins. J. Gen. Virol. 33, 547–550.

    Article  PubMed  CAS  Google Scholar 

  40. Warren, S.L., Carpenter, C.M. and Boak, R.A. (1940). Symptomatic herpes, a sequela of critically induced fever. J. Exp. Med. 71, 155–168.

    Article  PubMed  CAS  Google Scholar 

  41. Carton, C.A. and Kilbourne, E.D. (1952). Activation of latent herpes simplex by trigeminal sensory-root section. N. Engl. J. Med. 246, 172–176.

    Article  PubMed  CAS  Google Scholar 

  42. Price, R.W. and Schmitz, J. (1978). Reactivation of latent herpes simplex virus infection of the autonomic nervous system by postganglionic neurectomy. Infec. Immun. 19, 523–534.

    CAS  Google Scholar 

  43. Kristensson, K. (1970). Morphological studies of the neural spread of herpes simplex virus to the central nervous system. Acta. Neuropathol. 16, 54–63.

    Article  PubMed  CAS  Google Scholar 

  44. Kristensson, K., Lycke, E. and Sjostrand, J. (1971). Spread of herpes simplex virus in peripheral nerves. Acta. Neuropathol. 17, 44–53.

    Article  PubMed  CAS  Google Scholar 

  45. Cook, M.L. and Stevens, J.G. (1973). Pathogenesis of herpetic neuritis and ganglionitis in mice: Evidence for intra-axonal transport of infection. Infec. Immunol. 7, 272–288.

    CAS  Google Scholar 

  46. Lofgren, K.W., Stevens, J.G., Marsden, H.S. and Subak-Sharpe, J.H. (1977). Temperature-sensitive mutants of herpes simplex virus differ in the capacity to establish latent infections in mice. Virology 76, 440–443.

    Article  PubMed  CAS  Google Scholar 

  47. Watson, K., Stevens, J.G., Cook, M.L. and Subak-Sharpe, J.H. (1980). Latency compentence of thirteen HSV-1 temperature sensitive mutants. J. Gen. Virol. 49, 149–159.

    Article  PubMed  CAS  Google Scholar 

  48. Rock, D.L. and Fraser, N.W. (1985). Latent herpes simplex virus Type I DNA contains two copies of the virion DNA joint region. Virol. 55, 849–852.

    CAS  Google Scholar 

  49. Johnson, M.I. and Argiro, V. (1983). Techniques in the tissue culture of rat sympathetic neurons. Methods of Enzymology 103, 334–347.

    Article  CAS  Google Scholar 

  50. Hendry, I.A. (1974). The response of adrenergic neurons to axotomy and nerve growth factor. Brain Res. 94. 87–97.

    Article  Google Scholar 

  51. Johnson, E.M., Macia, R.A., Andres, R.Y. and Bradshaw, R.A. (1979). The effects of drugs which destroy the sympathetic nervous system on the retrograde transport of nerve growth factor. Brain Res. 171, 461–472.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Johnson, E.M., Manning, P.T., Wilcox, C. (1988). The Biology of Nerve Growth Factor in Vivo. In: Ferrendelli, J.A., Collins, R.C., Johnson, E.M. (eds) Neurobiology of Amino Acids, Peptides and Trophic Factors. Topics in the Neurosciences, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1721-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1721-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8969-2

  • Online ISBN: 978-1-4613-1721-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics