Skip to main content

The Anaerobic Stress Response and its Use for Studying Gene Expression in Conifers

  • Chapter
Genetic Manipulation of Woody Plants

Part of the book series: Basic Life Sciences ((BLSC,volume 44))

Abstract

For many angiosperms, a shift from an aerobic to an anaerobic environment elicits a stress response that involves increased transcription of specific genes. The best known of these genes are those encoding ADH. Adh genes have now been cloned from several angiosperm species and their regulation is being studied. Because of the available information for angiosperms, similar studies in conifers should provide insights into gene regulation in this evolutionarily distinct, commercially important group of woody plants. We have begun our studies using ADH from Pinus radiata. Induction of one of two ADH isozymes can be detected on starch gels within 12 hr after exposure of germinating seedlings to anaerobic conditions. We constructed a cDNA library in the phage vector λgt10 and screened this library using an Adh cDNA clone from corn as a probe. Several clones have been isolated and are being characterized by restriction analysis, filter hybridization, and DNA sequence analysis. Preliminary results show about 70% sequence homology between the pine cDNA clones and the corn Adh cDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnett, J.P., and A.W. Naylor (1969) Alcohol dehydrogenase activity and ethanol utilization in germinating longleaf and slash pine seeds. For. Sci. 15:400–403.

    CAS  Google Scholar 

  2. Bennett, D.C., and M. Freeling (1987) Flooding and the anaerobic stress response. In Models in Plant Physiology and Biochemistry, Vol. 3, D. Newman and K. Wilson, eds. CRC Press, Inc., Boca Raton, Florida.

    Google Scholar 

  3. Bradford, K.J., and S.F. Yang (1981) Physiological responses of plants to waterlogging. Hort Science 16:25–30.

    CAS  Google Scholar 

  4. Bränden, C.-I., H. Eklund, C. Cambillau, and A.J. Pryor (1984) Correlation of exons with structural domains in alcohol dehydrogenase. EMBO J. 3:1307–1310.

    PubMed  Google Scholar 

  5. Brzezinski, R.B., B.G. Talbot, D. Brown, D, Klimuszko, S.D. Blakeley, and J.-P. Thirion (1986) Characterization of alcohol dehydrogenase in young soybean seedlings. Biochem. Genet. 24:643–656.

    Article  PubMed  CAS  Google Scholar 

  6. Callis, J., M. Fromm, and V. Walbot (1987) Efficient expression of the maize ADH-1 gene: Requirement for intervening sequences (submitted for publication).

    Google Scholar 

  7. Carpenter, J.R., and C.A. Mitchell (1980) Flood-induced shift of electron flow between cyanide-sensitive and alternative respiratory pathways in roots of tolerant and intolerant tree species. J. Am. Hort. Sci. 105:688–690.

    CAS  Google Scholar 

  8. Chang, C., and E.M. Meyerowitz (1986) Molecular cloning and DNA sequence of the Arabidopsis thaliana alcohol dehydrogenase gene. Proc. Natl. Acad. Sci., USA 83:1408–1412.

    Article  PubMed  CAS  Google Scholar 

  9. Chen, C.-H., K.K. Oishi, B. Kloeckener-Gruissem, and M. Freeling (1987) Organ specific expression of maize Adh1 is altered after a Mu transposon insertion. Genetics (in press).

    Google Scholar 

  10. Conkle, M.T. (1971) Inheritance of alcohol dehydrogenase and leucine aminopeptidase isozymes in knob cone pine. For. Sci. 17:190–194.

    CAS  Google Scholar 

  11. Conkle, M.T. (1971) Isozyme specificity during germination and early growth of knobcone pine. For. Sci. 17:494–498.

    CAS  Google Scholar 

  12. Conkle, M.T. (1981) Isozyme variation and linkage in six conifer species. In Proceedings of the Symposium on Isozymes of North American Forest Trees and Forest Insects, M.T. Conkle, ed. General Technical Report PSW-48, Berkeley, California, Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture, pp. 11–17.

    Google Scholar 

  13. Conkle, M.T., P.D. Hodgskiss, L.B. Nunnally, and S.C. Hunter (1982) Starch Gel Electrophoresis of Conifer Species: A Laboratory Manual, General Technical Report PSW-64, Berkeley, California, Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture.

    Google Scholar 

  14. Coutts, M.P., and J.J. Philipson (1978) Tolerance of tree roots to waterlogging. I. Survival of sitka spruce and lodgepole pine. New Phytol. 80:63–69.

    Article  Google Scholar 

  15. Coutts, M.P., and J.J. Philipson (1978) Tolerance of tree roots to waterlogging. II. Adaptation of sitka spruce and lodgepole pine to waterlogged soil. New Phytol. 80:71–77.

    Article  Google Scholar 

  16. Crawford, R.M.M. (1978) Metabolic adaptations to anoxia. In Plant Life in Anaerobic Environments, D.D. Hook and R.M.M. Crawford, eds. Ann Arbor Science Publishers, Inc., pp. 119–136.

    Google Scholar 

  17. Crawford, R.M.M. (1982) Physiological responses to flooding. In Physiological Plant Ecology. II. Water Relations and Carbon Assimilation, Vol. 12b, O.L. Lange, P.S. Nobel, C.B. Osmond, and H. Ziegler, eds. Springer-Verlag, Berlin, pp. 453–477.

    Google Scholar 

  18. DeBell, D.S., D.D. Hook, W.H. McKee, Jr., and J.L. Askew (1984) Growth and physiology of loblolly pine roots under various water table level and phosphorus treatments. For. Sci. 3:705–714.

    Google Scholar 

  19. Dennis, E.S., M.M. Sachs, W.L. Gerlach, E.J. Finnegan, and W.J. Peacock (1985) Molecular analysis of the alcohol dehydrogenase 2 (Adh2) gene of maize. Nucl. Acids Res. 13:727–743.

    Article  PubMed  CAS  Google Scholar 

  20. Dennis, E.S., W.L. Gerlach, A.J. Pryor, J.L. Bennetzen, A. Inglis, D. Llewellyn, M.M. Sachs, R.J. Ferl, and W.J. Peacock (1984) Molecular analysis of the alcohol dehydrogenase (Adh1) gene of maize. Nucl. Acids Res. 12:3983–4000.

    Article  PubMed  CAS  Google Scholar 

  21. Denslow, S., and D.D. Hook (1986) Extraction of alcohol dehydrogenase from fresh root tips of loblolly pine. Can. J. For. Res. 16:146–148.

    Article  CAS  Google Scholar 

  22. Dolferus, R., G. Marbaix, and M. Jacobs (1985) Alcohol dehydrogenase in Arabidopsis: Analysis of the induction phenomenon in plantlets and tissue cultures. Mol. Gen. Genet. 199:256–264.

    Article  CAS  Google Scholar 

  23. Ellis, J.G., D.J. Llewellyn, E.S. Dennis, and W.J. Peacock (1987) Maize Adh-1 promoter sequences control anaerobic regulation: Addition of upstream promoter elements from constitutive genes is necessary for expression in tobacco. EMBO J. 6:11–16.

    PubMed  CAS  Google Scholar 

  24. Ferl, R.J., M.D. Brennan, and D. Schwartz (1980) In vitro translation of maize ADH: Evidence for the anaerobic induction of mRNA. Biochem. Genet. 18:681–691.

    Article  PubMed  CAS  Google Scholar 

  25. Ferl, R.J., S.R. Dlouhy, and D. Schwartz (1979) Analysis of maize alcohol dehydrogenase by native-SDS two dimensional electrophoresis and autoradiography. Mol. Gen. Genet. 169:7–12.

    Article  CAS  Google Scholar 

  26. Freeling, M., and D.C. Bennett (1985) Maize Adh1. Ann. Rev. Genet. 19:297–323.

    Article  PubMed  CAS  Google Scholar 

  27. Fromm, M., L.P. Taylor, and V. Walbot (1985) Expression of genes electroporated into monocot and dicot plant cells. Proc. Natl. Acad. Sci., USA 82:5824–5828.

    Article  PubMed  CAS  Google Scholar 

  28. Fromm, M., J. Callis, and V. Walbot (1987) Introns increase chimeric gene expression in maize (submitted for publication).

    Google Scholar 

  29. Gross, R.H. (1986) The DNA inspector II: A program for analyzing and manipulating DNA sequence on the Apple Macintosh. Gene Anal. Techn. 3:67–74.

    Article  CAS  Google Scholar 

  30. Hageman, R.H., and D. Flesher (1960) The effect of anaerobic environment on the activity of alcohol dehydrogenase and other enzymes of corn seedlings. Arch. Biochem. Biophys. 87:203.

    Article  PubMed  CAS  Google Scholar 

  31. Hake, S., P.M. Kelley, W.C. Taylor, and M. Freeling (1985) Coordinate induction of alcohol dehydrogenase 1, aldolase, and other anaerobic RNAs in maize. J. Biol. Chem. 260:5050–5054.

    PubMed  CAS  Google Scholar 

  32. Hanson, A.D., J.V. Jacobsen, and J.A. Zwar (1984) Regulated expression of three alcohol dehydrogenase genes in barley aleurone layers. Plant Physiol. 75:573–581.

    Article  PubMed  CAS  Google Scholar 

  33. Hook, D.D. (1984) Adaptations to flooding with fresh water. In Flooding and Plant Growth, T.T. Kozlowski, ed. Academic Press, Inc., Orlando, Florida, pp. 265–294.

    Google Scholar 

  34. Howard, E.A., J.C. Walker, E.S. Dennis, and W.J. Peacock (1987) Regulated expression of an alcohol dehydrogenase 1 chimeric gene introduced into maize protoplasts. Planta 170:535–540.

    Article  CAS  Google Scholar 

  35. Huynh, T., R.A. Young, and R.W. Davis (1985) Constructing and screening cDNA libraries in lambda gt10 and lambda gt11. In DNA Cloning. Vol. 1. A Practical Approach, D.M. Glover, ed. IRL Press, Oxford, pp. 49–78.

    Google Scholar 

  36. Jackson, M.B., and M.C. Drew (1984) Effects of flooding on growth and metabolism of herbaceous plants. In Flooding and Plant Growth, T.T. Kozlowski, ed. Academic Press, Inc., Orlando, Florida, pp. 47–128.

    Google Scholar 

  37. Kawase, M. (1981) Anatomical and morphological adaptation of plants to waterlogging. Hort Science 16:30–34.

    CAS  Google Scholar 

  38. Keeley, J.E. (1979) Population differentiation along a flood frequency gradient: Physiological adaptations to flooding in Nyssa sylvatica. Ecol. Monogr. 49:89–108.

    Article  CAS  Google Scholar 

  39. Kelley, P.M., and M. Freeling (1984) Anaerobic expression of maize fructose-1,6-diphosphate aldolase. J. Biol. Chem. 59:14180–14183.

    Google Scholar 

  40. Kelley, P.M., and M. Freeling (1984) Anaerobic expression of maize glucose phosphate isomerase I. J. Biol. Chem. 259:673–677.

    PubMed  CAS  Google Scholar 

  41. Kelley, P.M., and D.R. Tolan (1986) The complete amino acid sequence for the anaerobically induced aldolase from maize derived from cDNA clones. Plant Physiol. 82:1076–1080.

    Article  PubMed  CAS  Google Scholar 

  42. Kozlowski, T.T., ed. (1984) Flooding and Plant Growth, Academic Press, Inc., Orlando, Florida, 356 pp.

    Google Scholar 

  43. Kozlowski, T.T. (1984) Plant responses to flooding of soil. Bioscience 34:162–167.

    Article  Google Scholar 

  44. Kozlowski, T.T. (1984) Responses of woody plants to flooding. In Flooding and Plant Growth, T.T. Kozlowski, ed. Academic Press, Inc., Orlando, Florida, pp. 129–163.

    Google Scholar 

  45. Kristofferson, D. (1987) The BIONET electronic network. Nature 325:555–556.

    Article  Google Scholar 

  46. Laszlo, A., and P. St. Lawrence (1983) Parallel induction and synthesis of PDC and ADH in anoxic maize roots. Mol. Gen. Genet. 192:110–117.

    Article  CAS  Google Scholar 

  47. Levan, M.A., and S.J. Riha (1986) Response of root systems of northern conifer transplants to flooding. Can. J. For. Res. 6:42–46.

    Article  Google Scholar 

  48. Levitt, J. (1980) Responses of Plants to Environmental Stresses. Vol. II. Water, Radiation, Salt, and Other Stresses, Academic Press, Inc., New York.

    Google Scholar 

  49. Lizardi, P.M., and A. Engelberg (1979) Rapid isolation of RNA using proteinase K and sodium perchlorate. Anal. Biochem. 98:112–116.

    Article  Google Scholar 

  50. Matters, G.L., and J.G. Scandalios (1986) Changes in plant gene expression during stress. Devel. Genet. 7:167–175.

    Article  CAS  Google Scholar 

  51. Mayne, R.G., and P.J. Lea (1984) Alcohol dehydrogenase in Hordeum vulgare: Changes in isoenzyme levels under hypoxia. Plant Sci. Lett. 37:73–78.

    Article  CAS  Google Scholar 

  52. Millar, C.I. (1985) Inheritance of allozyme variants in bishop pine (Pinus muricata). Biochem. Genet. 23:933–946.

    Article  PubMed  CAS  Google Scholar 

  53. Okimoto, R., M.M. Sachs, E.K. Porter, and M. Freeling (1980) Patterns of polypeptide synthesis in various maize organs under anaerobiosis. Planta 150:89–94.

    Article  CAS  Google Scholar 

  54. O’Malley, D.M., F.W. Allendorf, and G.M. Blake (1979) Inheritance of isozyme variation and heterozygosity in Pinus ponderosa. Biochem. Genet. 17:233–250.

    Article  PubMed  Google Scholar 

  55. Pereira, J.S., and T.T. Kozlowski (1977) Variations among woody angiosperms in response to flooding. Physiol. Plant. 41:184–192.

    Article  Google Scholar 

  56. Pezeshki, S.R., and J.L. Chambers (1985) Stomatal and photosynthetic response of sweetgum (Liquidambar styraciflua L.) to flooding. Can. J. For. Res. 15:371–375.

    Article  Google Scholar 

  57. Plessas, M.E., and S.H. Strauss (1986) Allozyme differentiation among populations, stands, and cohorts in Monterey pine. Can. J. For. Res. 16:1155–1164.

    Article  CAS  Google Scholar 

  58. Reid, D.M., and K.J. Bradford (1984) Effects of flooding on hormone relations. In Flooding and Plant Growth, T.T. Kozlowski, ed. Academic Press, Inc., Orlando, Florida, pp. 195–219.

    Google Scholar 

  59. Ricard, B., B. Mocquot, A. Fournier, M. Delseny, and A. Pradet (1986) Expression of alcohol dehydrogenase in rice embryos under anoxia. Plant Mol. Biol. 7:321–329.

    Article  CAS  Google Scholar 

  60. Roberts, J.K.M., F.H. Andrade, and I.C. Anderson (1985) Further evidence that cytoplasmic acidosis is a determinant of flooding intolerance in plants. Plant Physiol. 77:492–494.

    Article  PubMed  CAS  Google Scholar 

  61. Rowland, L.J., and J.N. Strommer (1986) Anaerobic treatment of maize roots affects transcription of Adh1 and transcript stability. Mol. Cell. Biol. 6:3368–3372.

    PubMed  CAS  Google Scholar 

  62. Sachs, M.M., and M. Freeling (1978) Selective synthesis of alcohol dehydrogenase during anaerobic treatment of maize. Mol. Gen. Genet. 161:111–115.

    CAS  Google Scholar 

  63. Sachs, M.M., M. Freeling, and R. Okimoto (1980) The anerobic proteins of maize. Cell 20:761–767.

    Article  PubMed  CAS  Google Scholar 

  64. Sachs, M.M., E.S. Dennis, J. Ellis, E.J. Finnegan, W.L. Gerlach, D. Llewellyn, and W.J. Peacock (1985) Adh1 and Adh2: Two genes involved in the maize anaerobic response. In Cellular and Molecular Biology of Plant Stress, J.L. Key and T. Kosuge, eds. ARCO PCRI and UCLA Symposium, Alan R. Liss, Inc., New York, pp. 217–226.

    Google Scholar 

  65. Sederoff, R., A.-M. Stomp, W.C. Chilton, and L.W. Moore (1986) Gene transfer into loblolly pine by Agrobacterium tumefaciens. Bio/Technology 4:647–649.

    Article  CAS  Google Scholar 

  66. Smith, A.M., C.M. Hylton, L. Koch, and H.W. Woolhouse (1986) Alcohol dehydrogenase activity in the roots of marsh plants in naturally waterlogged soils. Planta 168:130–138.

    Article  CAS  Google Scholar 

  67. Springer, B., W. Werr, P. Starlinger, D.C. Bennett, M. Zokolica, and M. Freeling (1986) The Shrunken gene on chromosome 9 of Zea mays L. is expressed in various plant tissues and encodes an anaerobic protein. Mol. Gen. Genet. 205:461–468.

    Article  PubMed  CAS  Google Scholar 

  68. Strauss, S.H., and M.T. Conkle (1986) Segregation, linkage, and diversity of allozymes in knobcone pine. Theor. Appl. Genet. 72:483–493.

    Google Scholar 

  69. Strommer, J.N., S. Hake, J. Bennetzen, W.C. Taylor, and M. Freeling (1982) Regulatory mutants of the maize Adh1 gene caused by DNA insertions. Nature 300:542–544.

    Article  CAS  Google Scholar 

  70. Tanksley, S.D., and R.A. Jones (1981) Effects of O2 stress on tomato alcohol dehydrogenase activity: Description of a second ADH coding gene. Biochem. Genet. 19:397–409.

    Article  PubMed  CAS  Google Scholar 

  71. Van Geyt, J., and M. Jacobs (1986) Mode of inheritance and some general characteristics of sugarbeet alcohol dehydrogenase. Plant Sci. 46:143–149.

    Article  Google Scholar 

  72. Vayda, M.E., and M. Freeling (1986) Insertion of the Mu1 transposable element into the first intron of maize Adh1 interferes with transcript elongation but does not disrupt chromatin structure. Plant Mol. Biol. 6:441–454.

    Article  CAS  Google Scholar 

  73. Zaerr, J.B. (1983) Short-term flooding and net photosynthesis in seedlings of three conifers. For. Sci. 29:71–78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Harry, D.E., Kinlaw, C.S., Sederoff, R.R. (1988). The Anaerobic Stress Response and its Use for Studying Gene Expression in Conifers. In: Hanover, J.W., Keathley, D.E., Wilson, C.M., Kuny, G. (eds) Genetic Manipulation of Woody Plants. Basic Life Sciences, vol 44. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1661-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1661-9_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8922-7

  • Online ISBN: 978-1-4613-1661-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics