Induction of Chromosome Aberrations in Chinese Hamster Cells After Heavy Ion Irradiation

  • S. Ritter
  • G. Kraft
Chapter
Part of the Nato ASI Series book series (NSSA, volume 154)

Abstract

The exposure of cells to chemical or physical agents results frequently in an injury of the cells concerning different cellular constitutents including DNA. DNA, which carries the genetic information of the cell, is the most critical target. Any change of this genetic information induces a genetic error — a mutation.

Keywords

Nickel Argon Uranium Bicarbonate Neon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arakaki D.T. and W. Schmid,1971, Chemical mutagenesis. The Chinese hamster bone marrow as an in vivo test system. II. Correlation with in vitro results on Chinese hamster fibroblasts and human fibroblasts and lymphocytes. Humangenetik 11: 119PubMedCrossRefGoogle Scholar
  2. Aufderheide E., H. Rink, L. Hieber, and G. Kraft, 1987, Heavy ion effects on cellular DNA: strand break induction and repair in cultured diploid lens epithelial cells. Int. J. Radiat. Biol. 51: 779CrossRefGoogle Scholar
  3. Awa A.A., 1974, Cytogenetic and oncogenetic effects of the ionizing radiations of the atomic bombs. In: German J. (ed.). Chromosomes and cancer, John Wiley and Sons, New York, 637pp.Google Scholar
  4. Bryant P.E. and G. Iliakis, 1984, Possible correlations between cell killing, chromosome damage and DNA repair after x-irradiation. In: Collin A, C. S. Downes and R. T. Johnson (eds.), DNA repair and its inhibition, IRL Press, Oxford.Google Scholar
  5. Caine A. and M.F. Lyon, 1977, The induction of chromosome aberrations in mouse dicytate oocytes by x-rays and chemical mutagens. Mutation Research 45: 325PubMedCrossRefGoogle Scholar
  6. Evans H.J., 1974, Effects of ionizing radiation on mammalian chromosomes. In: German J. (ed), Chromosomes and cancer, John Wiley and Sons, New York, 191pp.Google Scholar
  7. Kiehlmann B.A., 1966, Actions of chemicals on deviding cells. Prentice-Hall, Englewood Cliffs, New Yersey.Google Scholar
  8. Kraft G., H.W. Daues, B. Fischer, U. Kopf, H.P. Leibold, D. Quis, H. Stelzer, J. Kiefer, R. Schopfer, E. Schneider, U. Weber, H. Wulf and H. Dertinger, 1980, Irradiation chamber and sample changes for biological samples. Nucl. Instrum. Methods 168: 175CrossRefGoogle Scholar
  9. Kraft G., W. Kraft-Weyrather, E.A. Blakly and R. Roots, 1986, Heavy ion effects on cellular and subcellular systems: inactivation, chromosome aberrations and strand breaks induced by iron and nickel ions. Advances in Space Research 6: 127PubMedCrossRefGoogle Scholar
  10. Lücke-Huhle C, E.A. Blakely, P.Y. Chang and C.A. Tobias, 1979, Drastic G2 arrest in mammalian cells after irradiation with heavy-ion beams. Radiation Research 79: 97PubMedCrossRefGoogle Scholar
  11. Müller W., 1985, Chromosomenaberrationen der chinesischen Hamsterzellinie V 79 nach Rontgenund Schwerionenbestrahlung, GSI-Report 85-3.Google Scholar
  12. Nowell P.C., 1974, Chromosome changes and the clonal evolution of cancer. In: German J. (ed.), Chromosomes and cancer, John Wiley and Sons, 267pp.Google Scholar
  13. Sabatier L., W.A. Achkar, F. Hoffschir, C. Luccioni and B. Dutrillaux, 1987, Qualitative study of chromosomal lesions induced by neutrons and neon ions in human lymphocytes at Go phase. Mutation Research 178: 91PubMedCrossRefGoogle Scholar
  14. Skarsgard L.D., B.A. Kihlman, L. Parker, C.M. Pujara and S. Richardson, 1967, Survival, chromosome abnormalties, and recovery in heavy-ion-and x-irradiated mammalian cells. Radition Research Supplement 7: 208CrossRefGoogle Scholar
  15. Therman E., 1986, Human Chromosomes: Structure, Behavior, Effects. Springer Verlag, New York, 2. Edition.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • S. Ritter
    • 1
  • G. Kraft
    • 1
  1. 1.Gesellschaft für Schwerionenforschung BiophysikDarmstadt 11Germany

Personalised recommendations