Skip to main content

Abstract

The advent of single-channel technology has expanded the physiologist’s ability to understand gross cellular and organellar function at the molecular level. At the same time that we are increasingly employing these microscopic techniques to characterize the molecular aspects of ion channels, we are better able to define their macroscopic behavior. Although the goal of many of these studies is to identify a specific ion channel with a specific cellular or organellar function, there are numerous problems and limitations in confirming this identity. Frequently, for example, there may be several distinct channel types present in the same membrane. The identification of a function with a specific ion channel thus depends on the characterization of the activity at the cellular and at the molecular, single-channel level. Several broad approaches are routinely applied to study the molecular aspects of specific ion channels. Patch clamp methodology identifies the channels in native membranes and provides the biophysical fingerprint as well as key regulatory features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lester, H. (1988). Heterologous expression of excitability proteins: Route to more specific drugs? Science 241:1057–1063.

    Article  PubMed  CAS  Google Scholar 

  2. Racker, E. (1977). Perspectives and limitations of resolution-reconstitution experiments. J. Supramol. Struct. 6:215–228.

    Article  PubMed  CAS  Google Scholar 

  3. Miller, C., and Racker, E. (1979). Reconstitution of membrane transport functions. In The Receptors (R. D. O’Brien, ed.), Vol. 1, Plenum Press, New York, pp. 1–31.

    Google Scholar 

  4. Racker, E., Violand, B., O’Neal, S. A. M., and Telford, J. (1979). Re-constitution, a way of biochemical research; some new approaches to membrane bound enzymes. Arch. Biochem. Biophys. 198:470–477.

    Article  PubMed  CAS  Google Scholar 

  5. Wright, E. M. (1984). Electrophysiology of plasma membrane vesicles. Am. J. Physiol. 246:F363–F372.

    PubMed  CAS  Google Scholar 

  6. Illsley, N. P., and Verkman, A. S. (1987). Membrane chloride transport measured using a chloride-sensitive fluorescent probe. Biochemistry 26:1215–1219.

    Article  PubMed  CAS  Google Scholar 

  7. Tamkun, M. M., Talvenheimo, J. A., and Catterall, W. A. (1984). The sodium channel from rat brain. Reconstitution of neurotoxin-activated ion flux and scorpion toxin binding from purified components. J. Biol. Chem. 259:1676–1688.

    PubMed  CAS  Google Scholar 

  8. Barchi, R. L., Tanaka, J. C., and Furman, R. E. (1984). Molecular characteristics and functional reconstitution of muscle voltage-sensitive sodium channels. J. Cell. Biochem. 26:135–146.

    Article  PubMed  CAS  Google Scholar 

  9. Hartshorne, R. P., Keller, B. U., Talvenheimo, J. A., Catterall, W. A., and Montai, M. (1986). Functional reconstitution of purified sodium channels from brain in planar lipid bilayers. Ann. N.Y.Acad. Sci. 479:293–305.

    Article  PubMed  CAS  Google Scholar 

  10. Barhanin, J., Pauron, D., Lombet, A., Hanke, W., Boheim, G., and Lazdunski, M. (1984). New scorpion toxins with a very high affinity for Na2+ channels. Biochemical characterization and use for the purification of Na+ channels. J. Physiol. (Paris) 79:304–308.

    CAS  Google Scholar 

  11. Kraner, S. D., Tanaka, J. C., and Barchi, R. L. (1985). Purification and functional reconstitution of the voltage-sensitive sodium channel from rabbit T-tubular membranes. J. Biol. Chem. 260:6341–6347.

    PubMed  CAS  Google Scholar 

  12. Curtis, B. M., and Catterall, W. A. (1986). Reconstitution of the voltage-sensitive calcium channel purified from skeletal muscle transverse tubules. Biochemistry 25:3077–3083.

    Article  PubMed  CAS  Google Scholar 

  13. Prestipino, G., Valdivia, H. H., Li’evano, A., Darszon, A., Ramirez, A. N., and Possani, L. D. (1989). Purification and reconstitution of potassium channel proteins from squid axon membranes. FEBS Lett. 250:570–574.

    Article  PubMed  CAS  Google Scholar 

  14. Santacruz, T. L., Perozo, E., and Papazian, D. M. (1994). Purification and reconstitution of functional Shaker K+ channels assayed with a light-driven voltage-control system. Biochemistry 33:1295–1299.

    Article  Google Scholar 

  15. Sun, T., Naini, A. A., and Miller, C. (1994). High-level expression and functional reconstitution of Shaker K+ channels. Biochemistry 33:9992–9999.

    Article  PubMed  CAS  Google Scholar 

  16. Huganir, R. L., Schell, M. A., and Racker, E. (1979). Reconstitution of the purified acetylcholine receptor from Torpedo californica. FEBS Lett. 108:155–160.

    Article  PubMed  CAS  Google Scholar 

  17. Popot, J. L., Cartaud, J., and Changeux, J. P. (1981). Reconstitution of functional acetylcholine receptor. Incorporation into artificial lipid vesicles and pharmacology of the agonist-controlled permeability changes. Eur. J. Biochem. 118:203–214.

    Article  PubMed  CAS  Google Scholar 

  18. Lindstrom, J., Anholt, R., and Einarson, B. (1980). Purification of acetylcholine receptors, reconstitution into lipid vesicles, and study of agonist-induced cation channel regulation. J. Biol. Chem. 255:8340–8350.

    PubMed  CAS  Google Scholar 

  19. Nelson, N., Anholt, R., Lindstrom, J., and Montai, M. (1980). Reconstitution of purified acetylcholine receptors with functional ion channels in planar lipid bilayers. Proc. Natl. Acad. Sci. USA 77:3057–3061.

    Article  PubMed  CAS  Google Scholar 

  20. Matesic, D., and Liebman, P. A. (1987). cGMP-dependent cation channel of retinal rod outer segments. Nature 326:600–603.

    Article  PubMed  CAS  Google Scholar 

  21. Wohlfart, P., Muller, H., and Cook, N. J. (1989). Lectin binding and enzymatic deglycosylation of the cGMP-gated channel from bovine rod photoreceptors. J. Biol. Chem. 264:20934–20935.

    PubMed  CAS  Google Scholar 

  22. Corondado, R., and Campbell, K. P. (1987). Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+-permeable pore of the calcium release channel. J. Biol. Chem. 262:16636–16643.

    Google Scholar 

  23. Lai, F. A., Erickson, H. P., Rousseau, E., Liu, Q. Y., and Meissner, G. (1988). Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 331:315–319.

    Article  PubMed  CAS  Google Scholar 

  24. Paucek, P., Mironova, G., Mahdi, F., Beavis, A. D., Woldergiorgis, G., and Garlid, K. D. (1992). Reconstitution and partial purification of the glibenclamide-sensitive, ATP-dependent K+ channel from rat liver and beef heart mitochondria. J. Biol. Chem. 267:26062–26069.

    PubMed  CAS  Google Scholar 

  25. Klaerke, D. A., Karlish, S. J., and Jorgensen, P. L. (1987). Reconstitution in phospholipid vesicles of calcium-activated potassium channel from outer renal medulla. J. Membr. Biol. 95:105–112.

    Article  PubMed  CAS  Google Scholar 

  26. Klaerke, D. A., Petersen, J., and Jorgensen, P. L. (1987). Purification of Ca2+-activated K+ channel protein on calmodulin affinity columns after detergent solubilization of luminal membranes from outer renal medulla. FEBS Lett. 216:211–216.

    Article  PubMed  CAS  Google Scholar 

  27. Liu, S., Dubinsky, W. P., Haddox, M. K., and Schultz, S. G. (1991). Reconstitution of isolated Ca2+-activated K+ channel proteins from basolateral membranes of rabbit colonocytes. Am. J. Physiol. 261:C713-C717.

    PubMed  CAS  Google Scholar 

  28. Garcia-Calvo, M., Knaus, H. G., McManus, O. B., Giangiacomo, K. M., Kaczorowski, G. J., and Garcia, M. L. (1994). Purification and reconstitution of the high-conductance, calcium-activated potassium channel from tracheal smooth muscle. J. Biol. Chem. 269:676–682.

    PubMed  CAS  Google Scholar 

  29. Akabas, M. H., Redhead, C., Edelman, A., Cragoe, E. A., Jr., and Al-Awqati, Q. (1989). Purification and reconstitution of chloride channels from kidney and trachea. Science 244:1469–1472.

    Article  PubMed  Google Scholar 

  30. Schlesinger, P. H. (1990). Purification of a stilbene sensitive chloride channel and reconstitution of chloride conductivity into phospholipid vesicles. Biochem. Biophys. Res. Commun. 171:920–925.

    Article  PubMed  Google Scholar 

  31. Ran, S., and Benos, D. J. (1991). Isolation and functional reconstitution of a 38-kDa chloride channel protein from bovine tracheal membranes. J. Biol. Chem. 266:4782–4788.

    PubMed  CAS  Google Scholar 

  32. Goldberg, A. F., and Miller, C. (1991). Solubilization and functional reconstitution of a chloride channel from Torpedo californica electro-plax. J. Membr. Biol 124:199–206.

    Article  PubMed  CAS  Google Scholar 

  33. Finn, A. L., Gaido, M. L., and Dillard, M. (1992). Reconstitution and regulation of an epithelial chloride channel. Mol. Cell Biochem. 114:(l-2)21–26.

    PubMed  CAS  Google Scholar 

  34. Jovov, B., Ismailov, I. I., and Benos, D. J. (1995). Cystic fibrosis transmembrane conductance regulator is required for protein kinase A activation of an outwardly rectified anion channel purified from bovine tracheal epithelia. J. Biol. Chem. 270:1521–1528.

    Article  PubMed  CAS  Google Scholar 

  35. Donaldson, P. J., and Peracchia, C. (1991). Channel reconstitution in liposomes and planar bilayers with HPLC-purified MIP26 of bovine lens. J. Membr. Biol. 124:21–32.

    Article  PubMed  Google Scholar 

  36. Langridge-Smith, J. E., Field, M., and Dubinsky, W. P. (1983). Isolation of transporting membrane vesicles from bovine tracheal epithelium. Biochim. Biophys. Acta 731:318–328.

    Article  PubMed  CAS  Google Scholar 

  37. Haase, W., Schafer, A., Murer, H., and Kinne, R. (1978). Studies on the orientation of brush-border membrane vesicles. Biochem. J. 172:57–62.

    PubMed  CAS  Google Scholar 

  38. Costantin, J., Alcalen, S., de Sousa-Otero, A., Dubinsky, W. P., and Schultz, S. G. (1989). Reconstitution of an inwardly rectifying potassium channel from the basolateral membranes of Necturus entero-cytes into planar lipid bilayers. Proc. Natl. Acad. Sci. USA 86:5212–5216.

    Article  PubMed  CAS  Google Scholar 

  39. Hochstadt, J., Quinlan, D. C., Rader, R. L., Chen-Chang, L., and Dowd, D. (1975). Use of isolated membrane vesicles in transport studies. In Methods in Membrane Biology (E. D. Korn, ed.), Plenum Press, New York, Vol. 5, pp. 117–162.

    Google Scholar 

  40. Preston, C. L., Calenzo, M. A., and Dubinsky, W. P. (1992). Isolation of a chloride channel-enriched membrane fraction from tracheal and renal epithelia. Am. J. Physiol. 263:C879–C887.

    PubMed  CAS  Google Scholar 

  41. Dubinsky, W. P., and Monti, L. B. (1986). Resolution of apical from basolateral membranes of shark rectal gland. Am. J. Physiol. 251:C721–C726.

    PubMed  CAS  Google Scholar 

  42. Garty, H., Rudy, B., and Karlish, S. J. (1983). A simple and sensitive procedure for measuring isotope fluxes through ion-specific channels in heterogeneous populations of membrane vesicles. J. Biol. Chem. 258:13094–13099.

    PubMed  CAS  Google Scholar 

  43. Woodbury, D. J., and Miller, C. (1990). Nystatin induced liposome fusion. Biophys. J. 58:833–839.

    Article  PubMed  CAS  Google Scholar 

  44. Dubinsky, W. P., Mayorga-Wark, O., Garretson, L. T., and Schultz, S. G. (1993). Immunoisolation of a K+ channel from basolateral membranes of Necturus enterocytes. Am. J. Physiol. 1265:C548–C555.

    Google Scholar 

  45. Schultz, S. G. (1981). Homocellular regulatory mechanisms in sodium transporting epithelia. Avoidance of extinction by “flush through.” Am. J. Physiol. 241:F579–F590.

    PubMed  CAS  Google Scholar 

  46. Gunter-Smith, P., Grasset, E., and Schultz, S. G. (1982). Sodium-coupled amino acid and sugar transport by Necturus small intestine: An equivalent electrical circuit analysis of a rheogenic co-transport system. J. Membr. Biol. 66:25–39.

    Article  PubMed  CAS  Google Scholar 

  47. Mueller, P., and Rudin, D. O. (1969). Bimolecular lipid membranes. Techniques of formation, study of electrical properties, and induction of ionic gating phenomenon. In Laboratory Techniques in Membrane Biophysics (H. Passow and R. Stampfli, eds.), Springer-Verlag, Berlin, pp. 141–156.

    Google Scholar 

  48. Miller, C., ed. (1986). Ion Channel Reconstitution, Plenum Press, New York.

    Google Scholar 

  49. Valdivia, H. H., Dubinsky, W. P., and Coronado, R. (1988). Reconstitution and phosphorylation of chloride channels from airway epithelial membranes. Science 242:1441–1444.

    Article  PubMed  CAS  Google Scholar 

  50. Alvarez, O. (1986). How to set up a bilayer system. In Ion Channel Reconstitution (C. Miller, ed.), Plenum Press, New York, pp. 115–130.

    Google Scholar 

  51. Schultz, ed. (1980). Basic Principles of Membrane Transport, Cambridge University Press, London.

    Google Scholar 

  52. Robinson, R. A., and Stokes, R. H. (1959). Electrolyte Solutions, 2nd ed., Academic Press, New York.

    Google Scholar 

  53. Grissmer, S., and Cahalan, M. (1989). TEA2+ prevents inactivation while blocking open K+ channels in human T lymphocytes. Biophys. J. 55:203–206.

    Article  PubMed  CAS  Google Scholar 

  54. Latorre, R. (1986). The large calcium-activated potassium channel. In Ion Channel Reconstitution (C. Miller, ed.), Plenum Press, New York, pp.451–467.

    Google Scholar 

  55. MacKinnon, R., Heginbotham, L., and Abramson, T. (1990). Mapping the receptor site for charybdotoxin, a pore blocking potassium channel inhibitor. Neuron 5:767–771.

    Article  PubMed  CAS  Google Scholar 

  56. Sheppard, D. N., Giraldez, F, and Sepulveda, F. V. (1988). Kinetics of voltage-and Ca2+-activation and Ba2+ blockade of a large conductance K+ channel from Necturus enterocytes. J. Membr. Biol. 105:67–75.

    Google Scholar 

  57. Hoshi, T., Zagotta, W. N., and Aldrich, R. W. (1990). Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250:533–538.

    Article  PubMed  CAS  Google Scholar 

  58. Zagotta, W. N., Hoshi, T., and Aldrich, R. W. (1990). Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science 250:568–571.

    Article  PubMed  CAS  Google Scholar 

  59. Stuhmer, W., Conti, F., Suzuki, H., Wang, X. D., Noda, M., Kubo, H., and Numa, S. (1989). Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597–603.

    Article  PubMed  CAS  Google Scholar 

  60. Dubinsky, W. P., Mayorga-Wark, O., and Schultz, S. G. (1992). A peptide from Drosophila Shaker K+ channel inhibits voltage-gated K+ channels in basolateral membranes of Necturus enterocytes. Proc. Natl. Acad. Sci. USA 89:1770–1774.

    Article  PubMed  CAS  Google Scholar 

  61. Mayorga-Wark, O., Costantin, J., Dubinsky, W. P., and Schultz, S. G. (1993). Effects of a Shaker K+ channel peptide and trypsin on a K+ channel in Necturus enterocytes. Am. J. Physiol. 265:C541–C547.

    PubMed  CAS  Google Scholar 

  62. Mayorga-Wark, O., Dubinsky, W. P., and Schultz, S. G. (1995). Reconstitution of a K(ATP) channel from basolateral membranes of Necturus enterocytes. Am. J. Physiol. 269:C464–C471.

    PubMed  CAS  Google Scholar 

  63. Ashcroft, S. J. H., and Ashcroft, F. M. (1990). Properties and function of ATP-sensitive K-channels. Cell Signalling 2:197–214.

    Article  PubMed  CAS  Google Scholar 

  64. Edwards, G., and Weston, A. H. (1993). The pharmacology of ATP-sensitive potassium channels. Annu. Rev. Pharmacol. Toxicol. 33:597–637.

    Article  PubMed  CAS  Google Scholar 

  65. Kasahara, M., and Hinkle, P. C. (1977). Reconstitution and purification of the D-glucose transporter from human erythrocytes. J. Biol. Chem. 252:7384–7390.

    PubMed  CAS  Google Scholar 

  66. Miller, C., and Racker, E. (1976). Ca2+-induced fusion of fragmented sarcoplasmic reticulum with artificial planar bilayers. J. Membr. Biol. 30:283–300.

    Article  PubMed  CAS  Google Scholar 

  67. Reinhart, P. H., Chung, S., and Levitan, I. B. (1989). A family of calcium-dependent potassium channels from rat brain. Neuron 2:1031–1041.

    Article  PubMed  CAS  Google Scholar 

  68. Ran, S., Fuller, C. M., Arrate, M. P., Latorre, R., and Benos, D. J. (1992). Functional reconstitution of a chloride channel protein from bovine trachea. J. Biol. Chem. 267:20630–20637.

    PubMed  CAS  Google Scholar 

  69. Langridge-Smith, J. E., Field, M., and Dubinsky, W. P. (1984). Cl- transport in apical plasma membrane vesicles isolated from bovine tracheal epithelium. Biochim. Biophys. Acta 777:84–92.

    Article  PubMed  CAS  Google Scholar 

  70. Dubinsky, W. P., and Monti, L. B. (1986). Solubilization and reconstitution of a chloride transporter from tracheal apical membrane. Am. J. Physiol. 251:C713–C720.

    PubMed  CAS  Google Scholar 

  71. Dubinsky, W. P., Preston, C. L., Calenzo, M. A., White, G. J., and Decker, E. R. (1992). Immunolocalization of chloride-transporting membrane vesicles in tracheal epithelial cells. Am. J. Physiol. 263:C888–C895.

    PubMed  CAS  Google Scholar 

  72. Quinton, P. M. (1983). Chloride impermeability in cystic fibrosis. Nature 301:421–422.

    Article  PubMed  CAS  Google Scholar 

  73. Sato, K., and Sato, F. (1984). Defective β-adrenergic response of cystic fibrosis sweat glands in vivo and in vitro. J. Clin. Invest. 73:1763–1771.

    Article  PubMed  CAS  Google Scholar 

  74. Widdicombe, J. H. (1986). Cystic fibrosis and β-adrenergic response of airway epithelial cell cultures. Am. J. Physiol. 251:R818–R822.

    PubMed  CAS  Google Scholar 

  75. Welsh, M. J., Anderson, M. P., Rich, D. P., Berger, H. A., Denning, G. M., Ostedgaard, L. S., Sheppard, D. N., Cheng, S. H., Gregory, R. J., and Smith, A. E. (1992). Cystic fibrosis transmembrane conductance regulator: A chloride channel with novel regulation. Neuron 8:821–829.

    Article  PubMed  CAS  Google Scholar 

  76. Frizzell, R. A. (1993). The molecular physiology of cystic fibrosis. NIPS 8:117–120.

    CAS  Google Scholar 

  77. Riordan, J. R., Rommens, J. M., Karem, B.-S., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plausic, N., Chou, J. L., Drumm, M. L., Iannuzzi, M. C., Collins, F. S., and Tsui, L. C. (1989). Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 245:1066–1073.

    Article  PubMed  CAS  Google Scholar 

  78. Cheng, S. H., Gregory, R. J., Marshall, J., Paul, S., Souza, D. W., White, G. A., O’Riordan, C. R., and Smith, A. E. (1990). Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63:827–834.

    Article  PubMed  CAS  Google Scholar 

  79. Rich, D. P., Anderson, M. P., Gregory, R. J., Cheng, S. H., Paul, S., Jefferson, D. M., McCann, J. D., Klinger, K. W., Smith, A. E., and Welsh, M. J. (1990). Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells. Nature 347:358–363.

    Article  PubMed  CAS  Google Scholar 

  80. Anderson, M. P., Gregory, R. J., Thompson, S., Souza, D. W., Paul, S., Mulligan, R. C., Smith, A. E., and Welsh, M. J. (1991). Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253:202–205.

    Article  PubMed  CAS  Google Scholar 

  81. Bear, C. E., Li, C., Kartner, N., Bridges, R. J., Jensen, T. J., Ramjeesingh, M., and Riordan, J. R. (1992). Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68:809–818.

    Article  PubMed  CAS  Google Scholar 

  82. Welsh, M. J., and Smith, A. E. (1993). Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73:1251–1254.

    Article  PubMed  CAS  Google Scholar 

  83. Marshall, J., Fang, S., Ostedgaard, L. S., O’Riordan, C. R., Ferrara, D., Amara, J. F., Hoppe, H., IV, Scheule, R. K., Welsh, M. J., Smith, A. E., and Cheng, S. H. (1994). Stoichiometry of recombinant cystic fibrosis transmembrane conductance regulator in epithelial cells and its functional reconstitution into cells in vitro. J. Biol. Chem. 269:2987–2995.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Dubinsky, W.P., Mayorga-Wark, O. (1996). Methods of Reconstitution of Ion Channels. In: Schultz, S.G., Andreoli, T.E., Brown, A.M., Fambrough, D.M., Hoffman, J.F., Welsh, M.J. (eds) Molecular Biology of Membrane Transport Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1143-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1143-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8446-8

  • Online ISBN: 978-1-4613-1143-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics