Skip to main content

Abstract

Mechanosensitive or stretch-activated (SA) channels respond to membrane stress by changes in open probability. These channels exist in auditory cells, stretch receptors, muscle spindles, vascular endothelium, and other neurosensory tissues where their physiological function seems readily apparent. It is less obvious why nonexcitable cells, such as those of blood and epithelial tissues, need channels that respond to mechanical stimuli. Clearly, all cells must cope with the dual problems of volume regulation and electrolyte homeostasis. Since the primary function of epithelia is salt and water transport, these cells face both extracellular and intracellular osmotic challenges. For example, Na-transporting epithelia in the intestine and kidney must accommodate significant variations in net solute uptake without suffering destructive changes in cell volume, caused by slight discrepancies between influx and efflux.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schultz, S. G. (1981). Homocellular regulatory mechanisms in sodium-transporting epithelia: Avoidance of extinction by “flush-through.” Am. J. Physiol. 241:F579–F590.

    PubMed  CAS  Google Scholar 

  2. Brehm, P., Kullberg, R., and Moody-Corbett, F. (1984). Properties of non-junctional acetylcholine receptor channels in innervated muscle of Xenopus larvae. J. Physiol. (London) 350:631–648.

    CAS  Google Scholar 

  3. Guharay, F., and Sachs, F. (1984). Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J. Physiol. (London) 352:685–701.

    CAS  Google Scholar 

  4. Sachs, F. (1986). Biophysics of mechanoreception. Membr. Biochem. 6:173–195.

    PubMed  CAS  Google Scholar 

  5. Sachs, F. (1987). Baroreceptor mechanisms at the cellular level. Fed. Proc. 46:12–16.

    PubMed  CAS  Google Scholar 

  6. Morris, C. E. (1990). Mechanosensitive ion channels. J. Membr. Biol. 113:93–107.

    PubMed  CAS  Google Scholar 

  7. Sachs, F. (1989). Ion channels as mechanical transducers. In Cell Shape: Determinants, Regulation and Regulatory Role (F. Bonner and W. Stein, eds.), Academic Press, New York, pp. 63–92.

    Google Scholar 

  8. Hoffmann, E. K., and Kolb, H.-A. (1991). Mechanisms of activation of regulatory volume responses after cell swelling. In Comparative and Environmental Physiology, Vol. 9 (R. Gilles, E. K. Hoffmann, and L. Bolis, eds.), Springer-Verlag, Berlin, pp. 140–177.

    Google Scholar 

  9. Christensen, O. (1987). Mediation of cell volume regulation by Ca influx through stretch-activated channels. Nature 330:66–68.

    PubMed  CAS  Google Scholar 

  10. Cooper, K. E., Tang, J. M., Rae, J. L., Eisenberg, R. S. (1986). A cation channel in frog lens epithelia responsive to pressure and calcium. J. Membr. Biol. 93:259–269.

    PubMed  CAS  Google Scholar 

  11. Falke, L. C., and Misler, S. (1989). Activity of ion channels during volume regulation by clonal N1E115 neuroblastoma cells. Proc. Natl. Acad. Sci. USA 86:3919–3923.

    PubMed  CAS  Google Scholar 

  12. Duncan, R., and Misler, S. (1989). Voltage-activated and stretch-activated Ba2+ conducting channels in an osteoblast-like cell line (UMR 106). FEBS Lett. 251:17–21.

    PubMed  CAS  Google Scholar 

  13. Christensen, O., and Hoffmann, E. K. (1992). Cell swelling activates K and Cl channels as well as non-selective stretch-activated cation channels in Ehrlich ascites tumor cells. J. Membr. Biol. 129: 13–36.

    PubMed  CAS  Google Scholar 

  14. Ubl, J., Murer, H., and Kolb, H. A. (1988). Ion channels activated by osmotic and mechanical stress in membranes of opossum kidney cells. J. Membr. Biol. 104:223–232.

    PubMed  CAS  Google Scholar 

  15. Yang, X., and Sachs, F. (1989). Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243:1068–1071.

    PubMed  CAS  Google Scholar 

  16. Lansman, J. B. (1987). Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers. Nature 325:811–813.

    PubMed  CAS  Google Scholar 

  17. Kirber, M. T., Walsh, J. V., and Singer, J. J. (1988). Stretch-activated ion channels in smooth muscle: A mechanism for the initiation of stretch-induced contraction. Pfluegers Arch. 412:339–345.

    CAS  Google Scholar 

  18. Hurst, A. M., and Hunter, M. (1990). Stretch-activated channels in single early distal tubule cells of the frog. J. Physiol. (London) 430:13–24.

    CAS  Google Scholar 

  19. Hunter, M. (1990). Stretch-activated channels in the basolateral membrane of single proximal cells of frog kidney. Pfluegers Arch. 416:448–453.

    CAS  Google Scholar 

  20. Filipovic, D., and Sackin, H. (1991). A calcium-permeable stretch-activated cation channel in renal proximal tubule. Am. J. Physiol. 260:F119–F129.

    PubMed  CAS  Google Scholar 

  21. Lansman, J. B. (1990). Blockage of current through single calcium channels by trivalent lanthanide cations. Effect of ionic radius on the rates of ion entry and exit. J. Gen. Physiol. 95:679–696.

    PubMed  CAS  Google Scholar 

  22. Ubl, J., Murer, H., and Kolb, H.-A. (1988). Hypotonic shock evokes opening of Ca-activated K channels in opossum kidney cells. Pfluegers Arch. 412:551–553.

    CAS  Google Scholar 

  23. Taniguchi, J., and Guggino, W. B. (1989). Membrane stretch: A physiological stimulator of Ca-activated K channels in thick ascending limb. Am. J. Physiol. 257:F347–F352.

    PubMed  CAS  Google Scholar 

  24. Montrose-Rafizadeh, C., and Guggino, W. B. (1991). Role of intracellular calcium in volume regulation by medullary thick ascending limb cells. Am. J. Physiol. 260:402–409.

    Google Scholar 

  25. Beck, J. S., Breton, S., Laprade, R., and Giebisch, G. (1991). Volume regulation and intracellular calcium in the rabbit proximal convoluted tubule. Am. J. Physiol. 260:F861–F867.

    PubMed  CAS  Google Scholar 

  26. Okada, Y., and Hazama, A. (1989). Volume-regulatory ion channels in epithelial cells. News Physiol. Sci. 4:238–242.

    Google Scholar 

  27. Hazama, A., and Okada, Y. (1988). Ca sensitivity of volume-regulatory K and Cl channels. J. Physiol. (London) 402: 687–702.

    CAS  Google Scholar 

  28. Wong, S. M., DaBell, M. C., and Chase, H. (1990). Cell swelling increases intracellular free [Ca] in cultured toad bladder cells. Am. J. Physiol. 258:F292–F296.

    PubMed  CAS  Google Scholar 

  29. Sigurdson, W. S., Ruknudin, A., and Sachs, F. (1992). Calcium imaging of mechanically induced fluxes in tissue-cultured chick heart: Role of stretch-activated ion channels. Am. J. Physiol. 262:H1110–H1115.

    PubMed  CAS  Google Scholar 

  30. Linshaw, M. A., and Grantham, J. J. (1980). Effect of collagenase and ouabain on renal cell volume in hypotonic media. Am. J. Physiol. 238:F491–F498.

    PubMed  CAS  Google Scholar 

  31. Linshaw, M., Fogel, C. A., Downey, G. P., Koo, E. W. Y., Got-lieb, A. (1992). Role of cytoskeleton in volume regulation of rabbit proximal tubule in dilute medium. Am. J. Physiol. 262:F144–F150.

    PubMed  CAS  Google Scholar 

  32. Barish, M. E. (1983). A transient calcium-dependent chloride current in the immature Xenopus oocyte. J. Physiol. (London) 342:309–325.

    CAS  Google Scholar 

  33. Chen, J. G., Chen, Y., Kempson, S. A., and Yu, L. (1993). Hypo-tonicity potentiates chloride currents in Xenopus oocytes. Biophys. J. 64:A389.

    Google Scholar 

  34. Boton, R., Dascal, N., Gillo, B., and Lass, Y. (1989). Two calcium-activated chloride conductances in Xenopus laevis oocytes perme-abilized with the ionophore A23187. J. Physiol. (London) 408:511–534.

    CAS  Google Scholar 

  35. Moody, W. J., and Bosma, M. M. (1989). A nonselective cation channel activated by membrane deformation in oocytes of the ascid-ian Boltenia villosa. J. Membr. Biol. 107:179–188.

    CAS  Google Scholar 

  36. Odell, G. M., Oster, G., Alberch, P., and Burnside, B. (1981). The mechanical basis of morphogenesis. I. Epithelial folding and invagination. Dev. Biol. 85:446–462.

    PubMed  CAS  Google Scholar 

  37. Medina, I. R., and Bregestovski, P. D. (1988). Stretch-activated ion channels modulate the resting membrane potential during early embryogenesis. Proc. R. Soc. London Ser. B 235:95–102.

    CAS  Google Scholar 

  38. Davis, M. J., Donovitz, J. A., and Hood, J. D. (1992). Stretch-activated single-channel and whole cell currents in vascular smooth muscle cells. Am. J. Physiol. 262:C1083–C1088.

    PubMed  CAS  Google Scholar 

  39. Naruse, K., and Sokabe, M. (1993). Involvement of stretch-activated ion channels in Ca2+ mobilization to mechanical stretch in endothelial cells. Am. J. Physiol. 264:C1037–C1044.

    PubMed  CAS  Google Scholar 

  40. Davis, J. M., Donovitz, J. A., Zawieja, D. C., and Meininger, G. A. (1990). Whole-cell currents and intracellular calcium changes elicited by longitudinal stretch of single vascular smooth muscle cells. FASEB J. 4:A844.

    Google Scholar 

  41. Kim, D., and Fu, C. (1993). Activation of a nonselective cation channel by swelling in atrial cells. J. Membr. Biol. 135:27–37.

    PubMed  CAS  Google Scholar 

  42. Davidson, R., Tatakis, D., and Auerbach, A. (1990). Multiple forms of mechanosensitive ion channels in osteoblast-like cells. Pfluegers Arch. 416:646–651.

    CAS  Google Scholar 

  43. Davidson, R. (1993). Membrane stretch activates a high conductance K channel in G292 osteoblastic-like cells. J. Membr. Biol. 131:81–92.

    PubMed  CAS  Google Scholar 

  44. Millet, B., and Pickard, B. G. (1988). Gadolinium ion is an inhibitor suitable for testing the putative roles of stretch-activated ion channels in geotropism and thigmotropism. Biophys. J. 53:155a.

    Google Scholar 

  45. Zhou, X., Stumpf, M., Hoch, H., and Kung, C. (1991). A mechanosensitive channel in whole cells and in membrane patches of the fungus Uromyces. Science 253:1415–1417.

    CAS  Google Scholar 

  46. Pickard, B. G., and Ding, J. P. (1993). The mechanosensory calcium-selective ion channel: Key component of a plasmalemmal control centre? Aust. J. Plant Physiol. 20:439–459.

    PubMed  CAS  Google Scholar 

  47. Pickard, B. G., and Ding, J. P. (1992). Gravity sensing in higher plants. In Advances in Comparative and Environmental Physiology (F. Ito, ed.), Springer-Verlag, Berlin, pp. 81–110.

    Google Scholar 

  48. Hirsch, J., Leipziger, J., Fröbe, U., and Schlatter, E. (1993). Regulation and possible physiological role of the Ca-dependent K channel of cortical collecting ducts of the rat. Pfluegers Arch 442:492–498.

    Google Scholar 

  49. Suzuki, M., Kawahara, K., Ogawa, A., Morita, T., Kawaguchi, Y, Kurihara, S., and Sakai, O. (1990). Ca rises via G protein during regulatory volume decrease in rabbit proximal tubule cells. Am. J. Physiol. 258:F690–F696.

    PubMed  CAS  Google Scholar 

  50. Kawahara, K., Ogawa, A., and Suzuki, M. (1991). Hyposmotic activation of Ca-activated K channels in cultured rabbit kidney proximal tubule cells. Am. J. Physiol. 260:F27–F33.

    PubMed  CAS  Google Scholar 

  51. Harsdorf, R. V., Lang, R., Fullerton, M., Smith, A., and Woodcock, E. A. (1988). Right atrial dilation increases inositol-(1,4,5) triphosphate accumulation. FEBS Lett. 233:201–205.

    Google Scholar 

  52. Ling, B., Webster, C, and Eaton, D. (1992). Eicosanoids modulate apical Ca-dependent K channels in cultured rabbit principal cells. Am. J. Physiol 263:F116–F126.

    PubMed  CAS  Google Scholar 

  53. Watson, P. (1991). Function follows form: Generation of intracellular signals by cell deformation. FASEB J. 5:2013–2019.

    PubMed  CAS  Google Scholar 

  54. Strange, K. (1990). Volume regulation following Na pump inhibition in CCT principal cells: Apical K loss. Am. J. Physiol. 258:F732–F740.

    PubMed  CAS  Google Scholar 

  55. Sigurdson, W. J., Morris, C. E., Brezden, B. L., and Gardner, D. R. (1987). Stretch activation of a K channel in molluscan heart cells. J. Exp. Biol 127:191–209.

    Google Scholar 

  56. Welling, P. A., Linshaw, M. A., and Sullivan, L. W. (1985). Effect of barium on cell volume regulation in rabbit proximal straight tubules. Am. J. Physiol. 249:F20–F27.

    PubMed  CAS  Google Scholar 

  57. Macleod, R. J., and Hamilton, J. R. (1991). Separate K and Cl transport pathways are activated for regulatory volume decrease in jejunal villus cells. Am. J. Physiol. 260:G405–G415.

    PubMed  CAS  Google Scholar 

  58. Welling, P. A., and Linshaw, M. A. (1988). Importance of anion in hypotonic volume regulation of rabbit proximal straight tubule. Am. J. Physiol. 255:F853–F860.

    PubMed  CAS  Google Scholar 

  59. Welling, P. A., and O’Neil, R. G. (1990). Cell swelling activates basolateral Cl and K conductances in rabbit proximal tubule. Am. J. Physiol. 258:F951–F962.

    PubMed  CAS  Google Scholar 

  60. Sackin, H. (1987). Stretch-activated potassium channels in renal proximal tubule. Am. J. Physiol. 253:F1253–F1262.

    PubMed  CAS  Google Scholar 

  61. Filipovic, D., and Sackin, H. (1992). Stretch and volume activated channels in isolated proximal tubule cells. Am. J. Physiol. 262:F857–F870.

    PubMed  CAS  Google Scholar 

  62. Kawahara, K. (1990). A stretch-activated K channel in the basolateral membrane of Xenopus kidney proximal tubule cells. Pfluegers Arch. 415:624–629.

    CAS  Google Scholar 

  63. Sackin, H. (1989). A stretch-activated potassium channel sensitive to cell volume. Proc. Natl Acad. Sci. USA 86:1731–1735.

    PubMed  CAS  Google Scholar 

  64. Pacha, J., Frindt, G., Sackin, H., and Palmer, L. (1991). Apical maxi K channels in intercalated cells of CCT. Am. J. Physiol. 261:F696–F705.

    PubMed  CAS  Google Scholar 

  65. Stoner, L. C., and Morley, G. E. (1995). Effect of basolateral or apical hyposmolarity on apical maxi K channels of everted rat collecting tubule. Am. J. Physiol. 268:F569–F580.

    PubMed  CAS  Google Scholar 

  66. Kirber, M. T., Ordway, R. W., Clapp, L. H., Walsh, J. V, and Singer, J. J. (1991). Both membrane stretch and fatty acids directly activate large conductance Ca-activated K channels in vascular smooth muscle cells. FEBS Lett. 297:24–28.

    Google Scholar 

  67. Martinac, B., Buechner, M., Delcour, A., Adler, J., and Kung, C. (1987). Pressure-sensitive ion channel in Escherichia coli. Proc. Natl Acad. Sci. USA 84:2297–2301.

    CAS  Google Scholar 

  68. Martinac, B., Adler, J., and Kung C. (1990). Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348:261–263.

    PubMed  CAS  Google Scholar 

  69. Falke, L. C., Edwards, K., Pickard, B., and Misler, S. (1988). A stretch-activated anion channel in tobacco protoplasts. FEBS Lett. 237:141–144.

    PubMed  CAS  Google Scholar 

  70. Stanton, B. A., Dietl, P., and Schwiebert, E. (1990). Cell volume regulation in the cortical collecting duct: Stretch activated Cl channels. J. Am. Soc. Nephrol. 1:692 (abstract).

    Google Scholar 

  71. Stanton, B. A., Mills, J. A., and Schwiebert, E. M. (1991). Role of the cytoskeleton in regulatory volume decrease in cortical collecting duct cells in culture. J. Am. Soc. Nephrol. 2:751 (abstract).

    Google Scholar 

  72. Schwiebert, E. M., Karlson, K., Friedman, P. A., Dietl, P., Spielman, W. S., and Stanton, B. (1992). Adenosine regulates a chloride channel via protein kinase C and a G protein in a rabbit cortical collecting duct cell line. J. Clin. Invest. 89:834–841.

    PubMed  CAS  Google Scholar 

  73. Richter, E. A., Cleland, P. J., Rattigan, S., and Clark, M. G. (1987). Contraction-associated translocation of protein kinase C in rat skeletal muscle. FEBS Lett. 217:232–236.

    PubMed  CAS  Google Scholar 

  74. Hudson, R. L., and Schultz, S. G. (1988). Sodium-coupled glycine uptake by Ehrlich ascites tumor cells results in an increase in cell volume and plasma membrane channel activities. Proc. Natl Acad. Sci. USA 85:279–283.

    PubMed  CAS  Google Scholar 

  75. Watson, P. A. (1989). Accumulation of cAMP and calcium in S49 mouse lymphoma cells following hyposmotic swelling. J. Biol. Chem. 264:14735–14740.

    PubMed  CAS  Google Scholar 

  76. Krupinski, J., Coussen, F., Bakalyar, H., Tang, W., Feinstein, P. G., Orth, K., Slaughter, C., Reed, R., and Gilman, A. (1989). Adenylyl cyclase amino acid sequence: Possible channel- or transport-like structure. Science 244:1558–1564.

    PubMed  CAS  Google Scholar 

  77. Gustin, M. C., Zhou, X., Martinac, B., and Kung, C. (1988). A mechanosensitive ion channel in the yeast plasma membrane. Science 242:762–765.

    PubMed  CAS  Google Scholar 

  78. Franco, A., and Lansman, J. B. (1990). Calcium entry through stretch-inactivated ion channels in mdx myotubes. Nature 344:670–673.

    PubMed  CAS  Google Scholar 

  79. Hisada, T., Walsh, J. V., and Singer, J. (1993). Stretch-inactivated cationic channels in single smooth muscle cells. Pfluegers Arch. 422:393–396.

    CAS  Google Scholar 

  80. Ding, J. P., Bowman, C. L., Sokabe, M., and Sachs, F. (1989). Mechanical transduction in glial cells: SACs and SICs. Biophys. J. 55:244a.

    Google Scholar 

  81. Morris, C. E., and Sigurdson, W. J. (1989). Stretch-inactivated ion channels coexist with stretch-activated ion channels. Science 243:807–809.

    PubMed  CAS  Google Scholar 

  82. Wagoner, D. R. V. (1991). Mechanosensitive ion channels in atrial myocytes. Biophys. J. 59:546a.

    Google Scholar 

  83. Fong, P., Turner, P. R., Denetclaw, W. F., and Steinhardt, R. (1990). Increased activity of calcium leak channels in myotubes of Duchenne human and mdx mouse origin. Science 250:673–676.

    PubMed  CAS  Google Scholar 

  84. Lewis, S. A., and Clausen, C. (1991). Urinary proteases degrade epithelial sodium channels. J. Membr. Biol. 122:77–88.

    PubMed  CAS  Google Scholar 

  85. Colquhoun, D., and Hawkes, A. G. (1981). On the stochastic properties of single ion channels. Proc. R. Soc. London Ser. B 211:205–235.

    CAS  Google Scholar 

  86. Erxleben, C. (1989). Stretch-activated current through single ion chanels in the abdominal stretch receptor organ of the crayfish. J. Gen. Physiol. 94:1071–1083.

    PubMed  CAS  Google Scholar 

  87. Sachs, F., and Lecar, H. (1991). Stochastic models for mechanical transduction. Biophys. J. 59:1143–1145.

    PubMed  CAS  Google Scholar 

  88. Howard, J., Roberts, W. M., and Hudspeth, A. J. (1988). Mechano-electrical transduction by hair cells. Annu. Rev. Biophys. Biophys. Chem. 17:99–124.

    PubMed  CAS  Google Scholar 

  89. Hamill, O. P., and McBride, D. W. (1992). Rapid adaptation of single mechanosensitive channels in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 89:7462–7466.

    PubMed  CAS  Google Scholar 

  90. Gustin, M. C. (1992). Mechanosensitive ion channels in yeast. Mechanisms of activation and adaptation. In Advances in Comparative and Environmental Physiology, Vol. 10 (F. Ito, ed.), Springer-Verlag, Berlin, pp. 19–35.

    Google Scholar 

  91. Kwok, R., and Evans, E. (1981). Thermoelasticity of large lecithin bilayer vesicles. Biophys. J. 35 :637–652.

    PubMed  CAS  Google Scholar 

  92. Evans, E. A., Waugh, R., Melnik, L. (1976). Elastic area compressibility modulus of red cell membrane. Biophys. J. 16:585–595.

    PubMed  CAS  Google Scholar 

  93. Collins, A., Somlyo, A. V, and Hilgemann, D. W. (1992). The giant cardiac membrane patch method: Stimulation of outward Na-Ca exchange current by MgATP. J. Physiol (London) 454:27–57.

    CAS  Google Scholar 

  94. Gustin, M. C., Sachs, F., Sigurdson, W., Ruknudin, A., Bowman, C., and Morris, C. (1991). Single-channel mechanosensitive currents. Science 253:800–802.

    PubMed  CAS  Google Scholar 

  95. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981). Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pfluegers Arch. 391:85–100.

    CAS  Google Scholar 

  96. Sokabe, M., Sachs, F., and Jing, Z. (1991). Quantitative video microscopy of patch clamped membranes: Stress, strain, capacitance, and stretch activation. Biophys. J. 59:722–728.

    PubMed  CAS  Google Scholar 

  97. Ruknudin, A., Song, M. J., and Sachs, F. (1989). The ultrastructure of patch-clamped membranes: A study using high voltage electron microscopy. Biophys. J. 112:125–134.

    Google Scholar 

  98. Sokabe, M., and Sachs, F (1990). The structure and dynamics of patch-clamped membranes: A study using differential interference contrast light microscopy. J. Cell Biol. 111:599–606.

    PubMed  CAS  Google Scholar 

  99. Lambert, I. H., Hoffmann, E. K., and Christensen, P. (1987). Role of prostaglandins and leukotrienes in volume regulation by Ehrlich ascites tumor cells. J. Membr. Biol. 98:247–256.

    PubMed  CAS  Google Scholar 

  100. Ordway, R. W., Walsh, J. V., and Singer, J. J. (1989). Arachidonic acid and other fatty acids directly activate potassium channels in smooth muscle cells. Science 244:1176–1178.

    PubMed  CAS  Google Scholar 

  101. Ordway, R. W., Petrou, S., Kirber, M. T., Walsh, J. V., and Singer, J. J. (1992). Two distinct mechanisms of ion channel activation by membrane stretch: Evidence that endogenous fatty acids mediate stretch activation of K channels. Biophys. J. 61:A391 (abstract).

    Google Scholar 

  102. Ordway, R. W., Singer, J. J., and J. V W. Jr. (1991). Direct regulation of ion channels by fatty acids. Trends Neurol. Sci. 14:96–100.

    CAS  Google Scholar 

  103. Seifert, R., Schachtele, C, Roenthal, W., and Schultz, G. (1988). Activation of protein kinase C by cis- and trans-fatty acids and its potentiation by diacylglycerol. Biochem. Biophys. Res. Commun. 154 :20–26.

    PubMed  CAS  Google Scholar 

  104. McPhail, L. C., and Snyderman, R. (1984). A potential second messenger role for unsaturated fatty acids: Activation of Ca-dependent protein kinase. Science 244:622–625.

    Google Scholar 

  105. Morimoto, Y. M. (1988). Activation of protein kinase C by fatty acids and its dependency on Ca and phospholipid. Cell Struct. Funct. 13:45–49.

    PubMed  CAS  Google Scholar 

  106. Sheetz, M. P., and Singer, S. J. (1974). Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc. Natl Acad. Sci. USA 71:4457–4461.

    PubMed  CAS  Google Scholar 

  107. Branton, D. (1981). Membrane cytoskeletal interactions. Cold Spring Harbor Symp. Quant. Biol. 46:1–5.

    CAS  Google Scholar 

  108. Bennett, V. (1985). The membrane skeleton of human erythrocytes and its implications for more complex cells. Annu. Rev. Biochem. 54:273–304.

    PubMed  CAS  Google Scholar 

  109. Cantiello, H. F., Stow, J. L., Prat, A. G., and Ausiello, D. A. (1991). Actin filaments regulate Na channel activity. Am. J. Physiol. 261:C882–C888.

    PubMed  CAS  Google Scholar 

  110. Kubalski, A., Martinac, B., Adler, J., and Kung, C. (1991). Altered properties of the mechanosensitive ion channel in a lipoprotein mutant of E. coli. Biophys. J. 59:455a.

    Google Scholar 

  111. Foskett, J. K., and Spring, K. R. (1985). Involvement of calcium and cytoskeleton in gallbladder epithelial cell volume regulation. Am. J. Physiol. 248:C27–C36.

    PubMed  CAS  Google Scholar 

  112. Cornet, M., Delpire, E., and Gilles, R. (1987). Study of microfilaments network during volume regulation process of cultured PC 12 cells. Pfluegers Arch 410:223–225.

    CAS  Google Scholar 

  113. Cornet, M., Lambert, I. H., and Hoffmann, E. K. (1992). Relation between cytoskeleton, hypo-osmotic treatment and volume regulation in Ehrlich escites tumor cells. J. Membr. Biol. 131:55–66.

    Google Scholar 

  114. Morris, C. E., and Horn, R. (1991). Failure to elicit neuronal macroscopic mechanosensitive currents anticipated by single-channel studies. Science 251:1246–1249.

    PubMed  CAS  Google Scholar 

  115. Bear, C. E. (1990). A nonselective cation channel in rat liver cells is activated by membrane stretch. Am. J. Physiol. 258:C421–C428.

    PubMed  CAS  Google Scholar 

  116. Okada, Y., Hazma, A., and Yuan, W. L. (1990). Stretch-induced activation of Ca permeable ion channels is involved in the volume regulation of hypotonically swollen epithelial cells. Neurosci. Res. 12:S5–S13.

    CAS  Google Scholar 

  117. Sachs, F. (1991). Mechanical transduction by membrane ion channels: A mini review. Mol. Cell. Biochem. 104:57–60.

    PubMed  CAS  Google Scholar 

  118. Horn, D. (1988). Muscarinic activation of ionic currents measured by a new whole-cell recording method. J. Gen. Physiol. 92:145–159.

    PubMed  CAS  Google Scholar 

  119. Ubl, J., Murer, H., and Kolb, H.-A. (1989). Simultaneous recording of cell volume, membrane current and membrane potential: Effect of hypotonic shock. Pfluegers Arch. 415:381–383.

    CAS  Google Scholar 

  120. Cemerikic, D., and Sackin, H. (1993). Substrate activation of mechanosensitive, whole-cell currents in renal proximal tubule. Am. J. Physiol. 264:F697–F714.

    PubMed  CAS  Google Scholar 

  121. Sackin, H., and Palmer, L. G. (1987). Basolateral potassium channels in renal proximal tubule. Am. J. Physiol. 253:F476–F487.

    PubMed  CAS  Google Scholar 

  122. Kawahara, K., Hunter, M., and Giebisch, G. (1987). Potassium channels in Necturus proximal tubule. Am. J. Physiol. 253:F488–F494.

    PubMed  CAS  Google Scholar 

  123. Sachs, F. (1992). Stretch-sensitive ion channels: An update. In Sensory Transduction: Soc. of Gen. Physiol. 45th Ann. Symp. (D. Corey and S. Roper, ed.), Rockefeller University Press, New York, pp. 242–260.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Sackin, H. (1996). Stretch-Activated Ion Channels. In: Schultz, S.G., Andreoli, T.E., Brown, A.M., Fambrough, D.M., Hoffman, J.F., Welsh, M.J. (eds) Molecular Biology of Membrane Transport Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1143-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1143-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8446-8

  • Online ISBN: 978-1-4613-1143-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics