Skip to main content

Regulation of Growth and Secretion of Growth Factors by 17 B-Estradiol and V-RASH Oncogene in Human Mammary Carcinoma Cell Lines

  • Chapter
Cellular and Molecular Biology of Mammary Cancer

Abstract

Breast cancer is unique among cancers in that its growth is strongly regulated in about one third of clinical cases by estrogenic hormones or antiestrogenic antagonists (1). Breast cancer occurs in women who never had functional ovaries with only 1% of the frequency of that in women with intact ovaries. Thus, estrogens are stimulatory, at least initially, in nearly all breast cancers. This hormonal component of growth control appears to be a remnant of normal, differentiated epithelial proliferation. During puberty or pregnancy-lactation, estrogen exerts mitogenic, anabolic and secretory effects on mammary epithelium. While estrogen is a proximate mitogen for either normal or malignant breast epithelium, the hypothalamus-pituitary axis is indirectly in control of ovarian estrogen secretion by virtue of gonadotropin releasing hormone and gonadotropin stimulation (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

E2 :

estradiol

IMEM:

improved nodified Eagle’ medium

CM:

conditional meduim

CME2 :

medium conditioned by cells petreated with estradiol

HPLC:

high performance liquid chromotography

PDFG:

platelet-derived growth factor

EGF:

epidremal growth factor

IGF:

insulin-like growth factor

TGF:

transforming growth factor

FGF:

fibrolast growth factor

References

  1. Lipsett, M.B. and Lippman, M.E. Endocrine responsive cancers of man.In: Williams, R.H. (ed.) Textbook of Endocrinology, W.B. Saunders Co., Philadelphia, pp. 1213–1226, 1981.

    Google Scholar 

  2. Ross, G.T., Vande Wiele, R.L., and Frantz, A.G. The ovaries and the breasts.In: Williams, R.H. (ed.) Textbook of Endocrinology, W.B. Saunders Co., Philadelphia, pp. 355–411, 1981.

    Google Scholar 

  3. Eidne, K.A., Flanagan, C.A. and Miller, R.P. Gonadotropin-releasing hormone binding sites in human breast carcinoma. Science, 229: 989–991, 1985.

    Article  PubMed  CAS  Google Scholar 

  4. Ikeda, T., Danielpour, D., and Sirbasku, B.A. Isolation and properties of endocrine and autocrine type mammary tumor cell growth factors (estromedins).In: Bresciani, F., King, R.J.B., Lippman, M.E., Namer, M., and Raynaud, J.P. (eds.) Progress in Cancer Research and Therapy, Vol. 31, Raven Press, New York, pp. 171–186, 1983.

    Google Scholar 

  5. Brooks, S.C., Locke, E.R., and Soule, H.D. Estrogen receptor in a human breast cell line (MCF-7) from breast carcinoma. J. Biol. Chem., 248: 6251–6261, 1973.

    PubMed  CAS  Google Scholar 

  6. Lippman, M.E., Bolan, G., and Huff, K. The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long term culture. Cancer Res. 36: 4595–4601, 1976.

    PubMed  CAS  Google Scholar 

  7. Page, M.J., Field, J.K., Everett, N.P., and Green, C.D. Serum-regulation of estrogen responsiveness of the human breast cancer cell line MCF-7. Cancer Res. 43: 1244–1249, 1983.

    PubMed  CAS  Google Scholar 

  8. Soule, H.D. and McGrath, C.M. Estrogen responsive proliferation of clonal human breast carcinoma cells in athymic mice. Cancer Lett. 10: 177–189, 1980.

    Article  PubMed  CAS  Google Scholar 

  9. Engle, L.W. and Young, N.W. Human breast carcinoma cells in continuous culture: a review. Cancer Res. 38: 4327–4339, 1978.

    Google Scholar 

  10. Aitken, S.C. and Lippman, M.E. Hormonal regulation of de-novo pyrimidine synthesis and utilization in human breast cancer cells in tissue culture. Cancer Res. 43: 4681–4690, 1983.

    PubMed  CAS  Google Scholar 

  11. Aitken, S.C., and Lippman, M.E. Effect of estrogens and antiestrogens on growth-regulatory enzymes in human breast cancer cells in tissue culture. Cancer Res. 45: 1611–1620, 1985.

    PubMed  CAS  Google Scholar 

  12. Cowan, K., Levine, R., Aitken, S., Goldsmith, M., Douglass, E., Clendeninn, N., Nienhuis, A., and Lippman, M.E. Dihydrofolate reductase gene amplification and possible rearrangement in estrogen-responsive, methotrexate-resistant human breast cancer cells. J. Biol. Chem. 257: 15079–15086, 1982.

    PubMed  CAS  Google Scholar 

  13. Kasid, A., Davidson, N., Gelmann, E., and Lippman, M.E. Transcriptional control of thymidine kinase gene expression by estrogens and antiestrogens in MCF-7 human breast cancer cells. J. Biol. Chem. 261: 5562–5567, 1986.

    PubMed  CAS  Google Scholar 

  14. Freter, C.E., Lippman, M.E., and Gelmann, E.P. Hormonal effects on phosphatidyl inositol (P.I.) turnover in MCF-7 human breast cancer cells. Proceedings of the American Association for Cancer Research, Vol. 27, pp. 221, 1986.

    Google Scholar 

  15. Carney, D.H., Scott, D.L., Gordon, E.A. and LaBelle, E.F. Phosphoinositides in Mitogenesis: Neomycin inhibits thrombin-stimulated phosphoinositide turnover and initiation of cell proliferation. Cell 42: 479–488, 1985.

    Article  PubMed  CAS  Google Scholar 

  16. Nishizuka, Y. Protein kinases in a signal transduction. Trends Biochem. Sci., 9: 163–171, 1984.

    Article  Google Scholar 

  17. Horwitz, K.B. and McGuire, W.L. Estrogen control of progesterone receptor in human breast cancer. J. Biol. Chem. 253: 2223–2228, 1978.

    PubMed  CAS  Google Scholar 

  18. Butler, W.B., Kirkland, W.L., and Jorgensen, T.L. Induction of plasminogen activator by estrogen in a human breast cancer cell line (MCF-7). Biochem. Biophys. Res. Comm. 90: 1328–1334, 1979.

    Article  PubMed  CAS  Google Scholar 

  19. Ciocca, D.R., Adams, D.J., Edwards, D.P., Bjerke, R.J., and McGuire, W.L. Distribution of an estrogen induced protein with a molecular weight of 24,000 in normal and malignant human tissues and cells. Cancer Res., 43: 1204–1210, 1983.

    PubMed  CAS  Google Scholar 

  20. Westley, B. and Rochefort, H. A secreted glycoprotein induced by estrogen in human breast cancer cell lines. Cell 20: 353–362, 1980.

    Article  PubMed  CAS  Google Scholar 

  21. Bronzert, D.A., Silverman, S., and Lippman, M.E. Induction of a secreted protein in human breast cancer cells. Proceedings of the 67th Annual Endocrine Society Meeting, p. 252, 1985.

    Google Scholar 

  22. Jakolew, S.B., Breathnack, R., Jeltsch, J., and Chambone, P. Sequence of the pS2 mRNA induced by estrogen in the human breast cancer cell line MCF-7. Nucleic Acids Res. 12: 2861–2874, 1984.

    Article  Google Scholar 

  23. Burke, R.E., Harris, S.C., and McGuire, W.C. Lactate dehydrogenase in estrogen responsive human breast cancer cells. Cancer Res. 38: 2773–2780, 1978.

    PubMed  CAS  Google Scholar 

  24. Liotta, L. Tumor invasion and metastases: role of extracellular matrix. Proceedings of the American Association for Cancer Res. 26: 385–386, 1985.

    Google Scholar 

  25. Kaufman, U., Zapf, J., Torretti, B., and Froesch, E.R. Demonstration of a specific serum carrier protein of nonsuppressible insulin-like activityin vivo. J. Clin. Endocrinol Metab. 44: 160–166, 1977.

    Article  Google Scholar 

  26. Vignon, F., Capony, F., Chambon, M., Garcia, M., and Rochefort, H. Autocrine growth stimulation of the MCF-7 breast cancer cell by the estrogen regulated 53K protein. Endocrinology 118: 1537–1545, 1986.

    Article  PubMed  CAS  Google Scholar 

  27. Davidson, N.E., Bronzert, D.A., Chambon, P., Gelmann, E.P., and Lippman, M.E. Use of two MCF-7 cell variants to evaluate the growth regulatory potential of estrogen-induced products. Cancer Res. 46: 1904–1908, 1986.

    PubMed  CAS  Google Scholar 

  28. Bronzert, D.A., Greene, G.L., and Lippman, M.E. Selection and characterization of breast cancer cell line resistant to the antiestrogen LY 117018. Endocrinology 117: 1409–1417, 1985.

    Article  PubMed  CAS  Google Scholar 

  29. Bronzert, D.A., Triche, T.J., Gleason, P., and Lippman, M.E. Isolation and characterization of an estrogen-inhibited variant derived from the MCF-7 breast cell line. Cancer Res. 44: 3942–3951, 1984.

    PubMed  CAS  Google Scholar 

  30. Albini, A., Graf, J., Kitten, G.T., Kleinman, H.K., Martin, G.R., Veillette, A., and Lippman, M.E. 17β-Estradiol regulates and v- Ha-ras transfection constitutively enhances MCF-7 breast cancer cell interactions with basement membrane. Proc. Natl. Acad. Sci. 83: 8182–8186, 1986.

    Article  PubMed  CAS  Google Scholar 

  31. Lippman, M.E. Efforts to combine endocrine and chemotherapy in the management of breast cancer: do two and two equal three? Breast Cancer Res. Treat. 3: 117–127, 1983.

    Article  PubMed  CAS  Google Scholar 

  32. Jordan, V.C. Biochemical pharmacology of antiestrogen action. Pharmacological Reviews 36: 245–259, 1984.

    PubMed  CAS  Google Scholar 

  33. Watts, C.K.W., Murphy, L.C., and Sutherland, R.L. Microsomal binding sites for nonsteroidal antiestrogens in MCF-7 human mammary carcinoma cells. J. Biol. Chem. 259: 4223–4229, 1984.

    PubMed  CAS  Google Scholar 

  34. Sutherland, R.L., Hall, R.E., and Taylor, I.W. Cell proliferation kinetics of MCF-7 human mammary carcinoma cells in culture and effects of tamoxifen on exponentially growing and plateau phase cells. Cancer Res. 43: 3998–4006, 1983.

    PubMed  CAS  Google Scholar 

  35. Osborne, C.K., Hobbs, K., and Clark, G.M. Effects of estrogen and antiestrogens on growth of human breast cancer cells in athymic nude mice. Cancer Res. 45: 584–590, 1985.

    PubMed  CAS  Google Scholar 

  36. Osborne, C.K., Boldt, D.H., Clark, G.M., and Trent, J.M. Effects of tamoxifen on human breast cancer cell cycle kinetics: accumulation of cells in early G1 phase. Cancer Res. 43: 3583–3585, 1983.

    PubMed  CAS  Google Scholar 

  37. Berthois, Y., Katzenellenbogen, J.A., and Katzenellenbogen, B.S. Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc. Natl. Acad. Sci. 83: 2496–2500, 1986.

    Article  PubMed  CAS  Google Scholar 

  38. Smith, H.S., Scher, C.D., and Todaro, G.J. Induction of cell division in median lacking serum growth factor SV40. Virology 44: 359–370, 1971.

    Article  PubMed  CAS  Google Scholar 

  39. Heldin, C.H., and Westermark, B. Growth factors: mechanism of action and relations to oncogenes. Cell 37: 9–20, 1984.

    Article  PubMed  CAS  Google Scholar 

  40. Sporn, M.B., and Todaro, G.J. Autocrine secretion and malignant transformation of cells. New England J. Med. 303: 878–880, 1980.

    Article  CAS  Google Scholar 

  41. Delarco, J.E. and Todaro, G.J. Growth factors from murine sarcoma virus-transformed cells. Proc. Natl. Acad. Sci. 75: 4001–4005, 1978.

    Article  CAS  Google Scholar 

  42. Pastan, I. Regulation of cellular growth. Adv. Metab. Dis. 8:7–16, 1975.

    CAS  Google Scholar 

  43. Freedman, V.H. and Shin, S. Cellular tumorigenieity in nude mice: correlation with cell growth in semi-solid medium. Cell 3: 355–359, 1974.

    Article  PubMed  CAS  Google Scholar 

  44. Assoian, R.K., Grotendorst, G.R., Miller, D.M., and Sporn, M.B. Cellular transformation by coordinated action of three peptide growth factors from human platelets. Nature 309: 804–806, 1984.

    Article  PubMed  CAS  Google Scholar 

  45. Massague, J., Kelly, B., and Mottola, C. Stimulation by insulin-like growth factors is required for cellular transformation by type-βtransforming growth factor. J. Biol. Chem. 260: 4551–4554, 1985.

    PubMed  CAS  Google Scholar 

  46. Tucker, R.F., Shipley, G.D., Moses, H.L., and Holley, R.W. Growth inhibitor from BSC-1 cells closely related to platelet type-βtransforming growth factor. Science 226: 705–707, 1984.

    Article  PubMed  CAS  Google Scholar 

  47. Roberts, A.B., Anzano, M.A., Wakefield, L.M., Roche, N.S., Stern, D.F., and Sporn, M.B. Type-βtransforming growth factor: a bifunctional regulator of cellular growth. Proc. Natl. Acad. Sci. 82: 119–123, 1985.

    Article  PubMed  CAS  Google Scholar 

  48. Halper, J. and Moses, H.L. Epithelial tissue-derived growth factor-like polypeptides. Cancer Res. 43: 1972–1979, 1983.

    PubMed  CAS  Google Scholar 

  49. Lippman, M.E. Definition of hormones and growth factors required for optimal proliferation and expression of phenotypic responses in human breast cancer cells.In: Barnes, D.W., Sirbasku, D.A., and Sato, G.H. (eds). Cell Culture Methods for Molecular and Cell Biology, Vol. 2, Alan R. Liss, New York, pp. 183–200, 1984.

    Google Scholar 

  50. Furlanetto, R.W. and DiCarlo, J.N. Somatomedin C receptors and growth effects in human breast cells maintained in long-term culture. Cancer Res. 44: 2122–2128, 1984.

    PubMed  CAS  Google Scholar 

  51. Ikeda, T. and Sirbasku, D.A. Purification and properties of a mammary-uterine-pituitary tumor cell growth factor from pregnant sheep uterus. J. Biol. Chem. 259: 4049–4064, 1984.

    PubMed  CAS  Google Scholar 

  52. Bates, S.E., McManaway, M.E., Lippman, M.E., and Dickson, R.B. Characterization of estrogen responsive transforming activity in human breast cancer cell lines. Cancer Res. 46: 1707–1713, 1986.

    PubMed  Google Scholar 

  53. Huseby, R.A., Maloney, T.M., and McGrath, C.M. Evidence for a direct growth-stimulating effect of estradiol on human MCF-7 cellsin vivo. Cancer Res. 44: 2654–2659, 1984.

    PubMed  CAS  Google Scholar 

  54. McGrath, C.M. Augmentation of the response of normal mammary epithelial cells to estradiol by mammary stroma. Cancer Res. 43: 1355–1360, 1983.

    PubMed  CAS  Google Scholar 

  55. Hackett, A.J., Smith, H.S., Springer, E.L., Owens, R.B., Nelson-Rees, W.A., Riggs, J.L., and Gardner, M.B. Two syngeneic cell lines from human breast tissue: the aneuploid mammary epithelial (Hs578T) and the diploid myoepithelial (Hs578Bst) cell lines. J. Natl. Cancer Inst. 58: 1795–1806, 1977.

    PubMed  CAS  Google Scholar 

  56. Jakesz, R., Smith, C.A., Aitken, S., Huff, K.K., Schuette, W., Shackney, S., and Lippman, M.E. Influence of cell proliferation and all cycle phase on expression of estrogen receptor in MCF-7 breast cancer cells. Cancer Res. 44: 619–625, 1984.

    PubMed  CAS  Google Scholar 

  57. Dickson, R.B., Huff, K.K., Spencer, E.M., and Lippman, M.E. Induction of epidermal growth factor-related polypeptides by 17β-estradiol in MCF-7 human breast cancer cells. Endocrinology, 118: 138–142, 1986.

    Article  PubMed  CAS  Google Scholar 

  58. Vignon, F.,Derocq, D.F., Chambon, M., and Rochefort, H. Estrogen induced proteins secreted by the MCF-7 human breast cancer cells stimulated their proliferation. C.R. Acad. Sci. Paris Endocrinol. 296: 151–157, 1983.

    CAS  Google Scholar 

  59. Dickson, R.B., McManaway, M., and Lippman, M.E. Estrogen-induced factors of breast cancer cells partially replace estrogen to promote tumor growth. Science 232: 1540–1543, 1986.

    Article  PubMed  CAS  Google Scholar 

  60. Salomon, D.S., Zwiebel, J.A., Bano, M., Losonczy, I., Felnel, P., and Kidwell, W.R. Presence of transforming growth factors in human breast cancer cells. Cancer Res. 44: 4069–4077, 1984.

    PubMed  CAS  Google Scholar 

  61. Knabbe, C., Huff, K.K., Dickson, R.B., and Lippman, M.E. Transforming growth factor beta is a hormonally regulated negative growth factor in human breast cancer. Proceedings of the 68th Annual Meeting of the Endocrine Society, 1986.

    Google Scholar 

  62. Derynck, R., Roberts, A.B., Winkler, M.E., Chen, E.Y. and Goeddel, D.V. Human transforming growth factor-α: precursor structure and expression in E. coli. Cell 38: 287–297, 1984.

    CAS  Google Scholar 

  63. Huff, K.K., Kaufman, D., Gabbay, K.H., Spencer, E.M., Lippman, M.E., and Dickson, R.B. Human breast cancer cells secrete an insulin-like growth factor-I-related polypeptide. Cancer Res. 46: 4613–4619, 1986.

    PubMed  CAS  Google Scholar 

  64. Baxter, R.C., Maitland, J.E., Raisur, R.L., Reddel, R., and Sutherland, R.L. High molecular weight somatomedin-C (IGF-I) from T47D human mammary carcinoma cells: immunoreactivity and bioactivity.In: Spencer, E.M. (ed). Insulin-like Growth Factors/Somatomedins, Walter deGruyter Co., Berlin, pp. 615–618, 1983.

    Google Scholar 

  65. Jansen, M., Van Schaik, F.M.A., Ricker, A.T., Bullock, B., Woods, P.E., Gabbaz, K.H., Nussbaum, A.L., Sussenback, J.S., and Vander Branch, J.R. Sequence of cDNA encoding human insulin-like growth factor I precursor. Nature 306: 609–611, 1983.

    Article  PubMed  CAS  Google Scholar 

  66. Huff, K.K., Knabbe, C., Kaufman, D., Gabbay, K.H., and Dickson, R.B. Hormonal regulation of insulin-like growth factor I (IGF-I) secretion from MCF-7 human breast cancer cells. Proceedings of the 68th Annual Meeting of the Endocrine Society, p. 82, 1986.

    Google Scholar 

  67. Derynck, R., Jarrett, J.A., Chen, E.Y., Eaton, D.H., Bell, J.R., Assoian, R.K., Roberts, A.B., Sporn, M.B., and Goeddel, D.V. Human transforming growth factorβ: complementary DNA sequence and expression in normal and transformed cells. Nature 316: 701–705, 1985.

    Article  PubMed  CAS  Google Scholar 

  68. Knabbe, C., Lippman, M.E., Wakefield, L.M., Flanders, K.C., Kasid, A.., Derynck, R. Evidence that transforming growth factorβ is a hormonally regulated negative growth factor in human breast cancer cells. Cell 48: 417–428, 1987.

    Article  PubMed  CAS  Google Scholar 

  69. Bronzert, D., Davidson, N., Pantazis, P., and Antoniades, H. Synthesis and secretion of PDGF-like growth factor by human breast cancer cell lines. Proceedings of the 68th Annual Meeting of the Endocrine Society, p. 296, 1986.

    Google Scholar 

  70. Rozengurt, E., Sinnett-Smith, J., and Taylor-Papadimitriou, J. Production of PDGF-like growth factor breast cancer cell lines. Int. J. Cancer 36: 247–252, 1985.

    Article  PubMed  CAS  Google Scholar 

  71. Swain, S., Dickson, R.B., and Lippman, M.E. Anchorage independent epithelial colony stimulating activity in human breast cancer cell lines. Proceedings American Association for Cancer Research Annual Meeting 27: 213, 1986.

    Google Scholar 

  72. Kurachi, H., Okamoto, S., and Oka, T. Evidence for the involvement of the submandibular gland epidermal growth factor in mouse mammary tumorigenesis. Proc. Natl. Acad. Sci. 81: 5940–5943, 1935.

    Google Scholar 

  73. Shing, Y.W. and Klagsbran, M. Human and bovine milk contain different sets of growth factors. Endocrinology 115: 273–282, 1984.

    Article  PubMed  CAS  Google Scholar 

  74. Tarn, J.P. Physiological effects of transforming growth factor in the newborn mouse. Science 229: 673–675, 1985.

    Article  Google Scholar 

  75. Kao, R.T., Hall, J., Engel, L., and Stern, R. The matrix of human breast tumor cells is mitogenic for fibroblasts. Amer. J. Path. 115: 109–116, 1984.

    PubMed  CAS  Google Scholar 

  76. Tasjian, A.H., Voelkel, E.F., Lazzaro, M., Singer, F.R., Roberts, A. B., Derynck, R., Winkler, M.E.., Levine, L.α and β human transforming growth factors stimulate prostaglandin production and bone resorption in cultured mouse calvaria. Proc. Natl. Acad. Sci. 82: 4535–4538, 1985.

    Article  Google Scholar 

  77. West, D.C., Hampson, I.N., Arnold, F., and Kumar, S. Angiogenesis induced by degredation products of hyaluronic acid. Science 228: 1324–1326, 1985.

    Article  PubMed  CAS  Google Scholar 

  78. Schreiber, A.B., Kenney, J., Kowalski, J., Thomas, K.A., Gimenez-Gallego, G., Rios-Candelore, M., DiSalvo, J., Bamitault, D., Courty, J., Courtois, Y., Moemer, M., Loret, C., Burgess, W.H., Mehlman, T., Friesel, R., Johnson, W. and Maciag, T. A unique family of endothelial cell polypeptide mitogens: the antigenic and receptor cross-reactivity of bovine endothelial growth factor and eye-derived growth factor II. J. Cell Biol. 101: 1623–1626, 1985.

    Article  PubMed  CAS  Google Scholar 

  79. Gospodarowicz, D., Greenburg, G., Bialecki, H., and Zetter, B.R. Factors involved in the modulation of cell proliferationin vivo andin vitroo: the role of fibroblast and epidermal growth factors in the proliferative response of mammalian cells.In Vitro14: 85–113, 1978.

    Article  PubMed  CAS  Google Scholar 

  80. Kurachi, K., Davie, E.W., Strydom, D.J., Riordan, J.F., and Vallee, B. L. Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor. Biochemistry 24: 5494–5499, 1985.

    Article  PubMed  CAS  Google Scholar 

  81. Dickson, C., Smith, R., Brookes, S., Peter, G. Tumorigenesis by mouse mammary tumor virus: proviral activation of a cellular gene in the common integration region int-2. Cell 37: 529–536, 1984.

    Article  PubMed  CAS  Google Scholar 

  82. Zarbl, H., Sukumar, S., Arthur, A.V., Martin-Zanea, D., and Barbaeid, M. Direct mutagenesis of ha-ras-1 oncogenes by N-nitroso-N- methylurea during initiation of mammary carcinogenesis in rats. Nature 315: 382–385, 1985.

    Article  PubMed  CAS  Google Scholar 

  83. Kraus, M.H., Yuasa, Y., and Aaronson, S.A. A position 12-activated H-ras oncogene in all Hs578T mammary carcinosarcoma cells but not normal mammary cells of the same patient. Proc. Natl. Acad. Sci. 81: 5384–5388, 1984.

    Article  PubMed  CAS  Google Scholar 

  84. Slamon, D.J., deKernion, J.B., Verma, I.M., and Cline, M.J. Expression of cellular oncogenes in human malignancies. Science 224: 256–262, 1984.

    Article  PubMed  CAS  Google Scholar 

  85. Fitzpatrick, S.L., Brightwell, J., Wittliff, J.L., Barrows, G.H. and Schultz, G.S. Epidermal growth factor binding by breast tumor biopsies and relationship to estrogen receptor and progesterone receptor levels. Cancer Res. 44: 3448–3453, 1984.

    PubMed  CAS  Google Scholar 

  86. King, C.R., Kraus, M.H., Aaronson, S. Amplification of a novel V-erb-B-related gene in a human mammary carcinoma. Science 229: 974–976, 1985.

    Article  PubMed  CAS  Google Scholar 

  87. Gainsbury, J.R.C., Farndon, J.R., Sherbert, G.V., and Harris, A.L. Epidermal growth factor receptors and oestrogen receptors in human breast cancer. Lancet 1: 364–366, 1985.

    Article  Google Scholar 

  88. Davidson, N.E., Gelmann, E.P., Lippman, M.E., and Dickson, R.B. Expression of EGF receptor (EGF-R) and its mRNA in estrogen receptor (ER) negative human breast cancer cell lines. Proceedings of the Annual Meeting of the American Association for Cancer Research, p. 219, 1986.

    Google Scholar 

  89. Stampfer, M.R. and Bartley, J.C. Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo(a)pyrene. Proc. Natl. Acad. Sci. 82: 2394–2398, 1985.

    Article  PubMed  CAS  Google Scholar 

  90. Clark, R., Milleg, R., O’Rourke, E., Trahey, M., Stampfer, M., Kreigler, M., and McCormick, F. Transformation of human mammary epithelial cells with oncogenic retroviruses. Proceedings of the First Annual Meeting on Oncogenes, Frederick, MD, 1985.

    Google Scholar 

  91. Kasid, A., Lippman, M.E., Papageorge, A.G., Lowy, D.R., and Gelmann, E.P. Transfection of v-rasH DNA into MCF-7 cells bypasses their dependence on estrogen for tumorigenicity. Science 228: 725–728, 1985.

    Article  PubMed  CAS  Google Scholar 

  92. Kasid, A., Dickson, R.B., Huff, K.K., Bates, S.E., Knabbe, C., Bronzert, D., Gelmann, E.P., and Lippman, M.E. Activation of growth factor secretion in tumorigenic states of breast cancer induced by 17β-estradiol or v-Ha-ras oncogene. Proc. Natl. Acad. Sci. 84: 837–841, 1987.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Dickson, R.B., Lippman, M.E. (1987). Regulation of Growth and Secretion of Growth Factors by 17 B-Estradiol and V-RASH Oncogene in Human Mammary Carcinoma Cell Lines. In: Medina, D., Kidwell, W., Heppner, G., Anderson, E. (eds) Cellular and Molecular Biology of Mammary Cancer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0943-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0943-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-42761-9

  • Online ISBN: 978-1-4613-0943-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics