Basal Forebrain Cholinergic Neurons and Alzheimer’s Disease

  • Christine Höhmann
  • Piero Antuono
  • Joseph T. Coyle


Although neuropathological and epidemiological studies have long indicated Alzheimer’s dementia (AD) as a major cause of cognitive deterioration in the elderly (Larsson et al., 1963; Kay et al, 1964; Roth et al, 1967), the reports of Davies and Maloney (1976) and Bowen et al (1976) describing selective deficits in cholinergic synaptic neurochemical markers in the cortex and hippocampus of Alzheimer’s patients provoked a paradigm shift in the thinking of the neuroscientific community concerning the pathobiology of this disorder. Thus, in the 7-year period prior to these two publications, approximately 30 articles per annum appeared in the medical/scientific literature on AD, whereas in the 5-year period after these reports, the annual number of publications increased nearly 10-fold. While other factors such as the increasing interest in geriatric medicine and the growing appreciation of the social and economic implications of AD with regard to the increasing lifespan of individuals in Western society undoubtedly contributed to the burgeoning medical and scientific interest in the disorder, the discovery of selective neurotransmitter deficits in AD clearly had a tremendous impact.


Muscarinic Receptor Cholinergic Neuron Basal Forebrain Nucleus Basalis Choline Acetyltransferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, C. E., Cepeda, C, Boylan, M. K., Fisher, R. S., Hull, C. D., Buchwald, N. A., Wainer, B. H., and Levine, M. S., 1986, Basal forebrain neurons have axon collaterals that project to widely divergent cortical areas in the cat, Brain Res. 397: 365–371.PubMedCrossRefGoogle Scholar
  2. Adem, A., Nordberg, A., Bucht, G., and Winblad, B., 1986, Extraneural cholinergic markers in Alzheimer’s and Parkinson’s disease, Prog. Neuro-Psychopharmacol. Biol. Psychiatry 10: 247–257.CrossRefGoogle Scholar
  3. Amaral, D. G., and Kurz, J., 1985, An analysis of the origins of the cholinergic and non-cholinergic septal projections to the hippocampal formation for the rat, J. Comp. Neurol. 240: 37–59.PubMedCrossRefGoogle Scholar
  4. Ansell, G. B., and Spanner, S., 1979, Sources of choline for acetylcholine synthesis in the brain, in: Nutrition and the Brain, Vol. 5 ( A. Barbeau, J. H. Growden, and R. J. Wurtman, eds.), Raven Press, New York, pp. 35–46.Google Scholar
  5. Arendt, A. U., Bigl, V., Arendt, A., and Tennstedt, A., 1983, Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff s disease, Acta Neuropathol. (Berlin) 61: 101–108.CrossRefGoogle Scholar
  6. Armstrong, D. M., Saper, C. B., Levay, A. I., Wainer, B. H., and Terry, R. D., 1983, Distribution of cholinergic neurons in rat brain: Demonstration by immunocytochemical localization of choline acetyltransferase, J. Comp. Neurol. 216: 53–68.PubMedCrossRefGoogle Scholar
  7. Armstrong, D. M., Bruce, G., Hersh, L. B., and Terry, R. D., 1986, Choline acetyltransferase immunoreactivity in neuritic plaques of Alzheimer brain, Neurosci. Lett. 71: 229–234.PubMedCrossRefGoogle Scholar
  8. Aston-Jones, G., Shaver, R., and Dinan, T., 1984, Cortically projecting nucleus basalis neurons in rat are physiologically heterogeneous, Neurosci. Lett. 46: 19–24.PubMedCrossRefGoogle Scholar
  9. Aston-Jones, G., Shaver, R., and Dinan, T. G., 1985, Nucleus basalis neurons exhibit axonal branching with decreased impulse conduction velocity in rat cerebrocortex, Brain Res. 325: 271–285.PubMedCrossRefGoogle Scholar
  10. Atack, J. R., Perry, E. K., Bonham, J. R., Perry, R. H., Tomlinson, B. E., Blessed, G., and Fairbairn, A., 1983, Molecular forms of acetylcholinesterase in senile dementia of Alzheimer type: Selective loss of the intermediate (10S) form, Neurosci. Lett. 40: 199–204.PubMedCrossRefGoogle Scholar
  11. Atack, J. R., Perry, E. K., Perry, R. H., Wilson, I. D., Bober, M. J., Blessed, G., and Tomlinson, B. E., 1985, Blood acetyl- and butyrylcholinesterases in senile dementia of Alzheimer type, J. Neurol. Sci. 70: 1–12.PubMedCrossRefGoogle Scholar
  12. Baisden, R. H., Woodruff, M. L., and Hoover, D. B., 1984, Cholinergic and non-cholinergic septo-hippocampal projections: a double-label horseradish peroxidase-acetylcholinesterase study in the rabbit, Brain Res. 290: 146–151.PubMedCrossRefGoogle Scholar
  13. Bartus, R., Dean III, R. L., Beer, B., and Lippa, A. S., 1982, The cholinergic hypothesis of geriatric memory dysfunction, Science 217: 408–417.Google Scholar
  14. Beller, S. A., Overall, J. E., and Swann, A. C, 1985, Efficacy of oral physostigmine in primary degenerative dementia: A double-blind study of response to different dose level, Psychopharmacology 87: 147–151.PubMedCrossRefGoogle Scholar
  15. Ben-Barak, Y., Gazit, H., and Dudai, Y., 1980, Fornix lesion prevents an organophosp-hate-induced decrease in muscarinic receptor levels in rat hippocampus, Brain Res. 194: 249–253.CrossRefGoogle Scholar
  16. Berger, B., Verney, C, Gaspar, P., and Febvret, A., 1985, Transient expression of tyrosine hydroxylase immunoreactivity in some neurons of the rat neocortex during postnatal development, Dev. Brain Res. 23: 141–144.CrossRefGoogle Scholar
  17. Bigl, V., Woolf, N. J., and Butcher, L. L., 1982, Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: A combined fluorescent tracer and acetylcholinesterase analysis, Brain Res. Bull. 8: 727–749.PubMedCrossRefGoogle Scholar
  18. Birdsall, N. J. M., Burgen, A. S. V., and Hulme, E. C, 1978, The binding of agonists to brain muscarinic receptors, Mol. Pharmacol. 14: 723–736.PubMedGoogle Scholar
  19. Bisso, G. M., Masullo, C, Michalek, H., Silveri, M. C, and Pocchiari, M., 1986, Molecular forms of cholinesterases in CSF of Alzheimer’s Disease/Senile Dementia of the Alzheimer type patients and matched neurological controls, Life Sci. 38: 561–567.PubMedCrossRefGoogle Scholar
  20. Blessed, G., Tomlinson, B. E., and Roth, M., 1968, The association between quantitative measures of dementia and of senile change in the cerebral gray matter of elderly subjects, Br. J. Psychiatry 114: 797–811.PubMedCrossRefGoogle Scholar
  21. Bolam, J. P., Ingham, C. A., Izzo, P. N., Levey, A. I., Rye, D. B., Smith, A. D., and Wainer, B. H., 1987, Substance P-containing terminals in synaptic contact with cholinergic neurons in the neostriatum and basal forebrain: A double immunocytochemical study in the rat, Brain Res. 397: 279–289.CrossRefGoogle Scholar
  22. Bouras, C, Guntern, R., and Constantinidis, J., 1985, Somatostatin in dementias of the Alzheimer type, in: Clinical and Pharmacological Studies in Psychiatric Disorders ( G. D. Burrows, T. R. Norman, and L. Dennerstein, eds.), John Libbey, London, pp. 295–305.Google Scholar
  23. Bouras, C, De St. Hilaire-Kafi, S., and Constantinidis, J., 1986, Neuropeptides in Alzheimer’s disease: A review and morphological results, Prog. Neuro-Psychopharmacol. Bio. Psychiatry 10: 271–286.CrossRefGoogle Scholar
  24. Bowen, D. M., Smith, C. B., White, P., and Davidson, A. N., 1976, Neurotransmitter related enzymes and indixes of hypoxia in senile dementia and other abiotrophies, Brain, 99: 459–496.PubMedCrossRefGoogle Scholar
  25. Bowen, D. M., Benton, J. S., Spillane, J. A., Smith, C. C. T., and Allen, S. J., 1982, Choline acetyltransferase activity and histopathology of frontal neocortex from biopsies of demented patients, J. Neurol. Sci. 57: 191–202.PubMedCrossRefGoogle Scholar
  26. Bowen, D. M., Allen, S. J., Benton, J. S., Goodhardt, M. J., Haan, E. A., Palmer, A. M., Sims, N. R., Smith, C. C. T., Spillane, J. A., Esiri, M. M., Neary, D., Snowdon, J. S., Wilcock, G. K., and Davison, A. N., 1983, Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease, J. Neurochem. 41: 266–272.PubMedCrossRefGoogle Scholar
  27. Brinkman, S. D., and Gershon, S., 1983, Measurement of cholinergic drug effects on memory in Alzheimer’s disease, Neurobiol. Aging 4: 139–145.PubMedCrossRefGoogle Scholar
  28. Butcher, L. L., Talbot, K., and Bilezikjian, L., 1975, Acetylcholinesterase neurons in dopamine-containing regions of the brain, J. Neural Trans. 37: 127–153.CrossRefGoogle Scholar
  29. Candy, J. M., Perry, R. H., Perry, E. K., Irving, D., Blessed, G., Fairbairn, A. F., and Tomlinson, B. E., 1983, Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases, J. Neurol. Sci. 54: 277–289.CrossRefGoogle Scholar
  30. Carlsen, J., Zaborszky, L., and Heimer, L., 1985, Cholinergic projections from the basal forebrain to the basolateral amygdaloid complex: A combined retrograde fluorescent and immunohistochemical study, J. Comp. Neurol. 234: 155–167.PubMedCrossRefGoogle Scholar
  31. Casamenti, F., Deffenu, G., Abbamondi, A. L., and Pepeu, G., 1986, Changes in cortical acetylcholine output induced by modulation of the nucleus basalis, Brain Res. Bull. 16: 689–695.PubMedCrossRefGoogle Scholar
  32. Caulfield, M. P., Straughan, D. W., Cross, A.J., Crow, T., and Birdsall, N.J. M., 1982, Cortical muscarinic receptor subtypes and Alzheimer’s disease, Lancet 2: 1277.PubMedCrossRefGoogle Scholar
  33. Chipperfield, B., Newman, P. M., and Moyes, I. C. A., 1981, Decreased erythrocyte Cholinesterase activity in dementia, Lancet 2: 199.PubMedCrossRefGoogle Scholar
  34. Christie, J. E., Shering, A., Ferguson, J., and Glen, A. I. M., 1981, Physostigmine and arecoline: Effects of intravenous infusions in Alzheimer presenile dementia, Br. J. Psychiatry 138: 46–50.PubMedCrossRefGoogle Scholar
  35. Clarke, P. B. S., Schwartz, R. D., Paul, S. M., Pert, C. B., and Pert, A. 1985, Nicotinic binding in rat brain: Autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [1251]alpha-bungarotoxin, J. Neurosci. 5: 1307–1315.PubMedGoogle Scholar
  36. Collerton, D., 1986, Cholinergic function and intellectual decline in Alzheimer’s disease—Commentary, Neuroscience 19: 1–28.PubMedCrossRefGoogle Scholar
  37. Collier, B., and Mitchell, J. F., 1966, The central release of acetylcholine during stimulation of the visual pathway, J. Physiol. 184: 239–254.PubMedGoogle Scholar
  38. Cortes, R., Probst, A., Tobler, H-J., and Palacios, J. M., 1986, Muscarinic cholinergic receptor subtypes in the human brain. II. Quantitative autoradiographic studies, Brain Res. 362: 239–253.PubMedCrossRefGoogle Scholar
  39. Coyle, J. T., 1982, Excitatory Amino Acid Neurotoxins, in: Handbook of Psychopharmacology, Vol. 15 ( L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), Plenum Press, New York, pp. 237–269.Google Scholar
  40. Coyle, J. T., Price, D. L., and Delong, M., 1983, Alzheimer’s Disease: A disorder of cortical cholinergic innervation, Science 219: 1184–1190.PubMedCrossRefGoogle Scholar
  41. Cross, A. J., Crow, T. J., Johnson, J. A., Perry, E. K., Perry, R. H., Blessed, G., and Tomlinson, B. E., 1984, Studies on neurotransmitter receptor systems in neocortex and hippocampus in senile dementia of the Alzheimer-type, J. Neurol. Sci. 64: 109–117.PubMedCrossRefGoogle Scholar
  42. Cross, A. J., Crow, T. J., Johnson, J. A., Perry, E. K., Perry, R. H., Blessed, G., and Tomlinson, B. E., 1984, Studies on neurotransmitter receptor systems in neocortex and hippocampus in senile dementia of the Alzheimer-type, J. Neurol. Sci. 64: 109–117.Google Scholar
  43. Crow, T. J., Grove-White, I. G., and Kelman, G. R., 1971, Differential effect of atropine and hyoscine on human learning capacity, Br. J. Pharmacol. 43: 464.Google Scholar
  44. Curtis, D. R., Ryall, R. W., and Waikins, J. C, 1965, Cholinergic transmission in the mammalian central nervous system, in: Cholinergic Mechanism ( P. G. Waser, ed.), Raven Press, New York, pp. 137–145.Google Scholar
  45. Davies, P., 1979a, Biochemical changes in Alzheimer’s disease-senile dementia: neurotransmitters in senile dementia of the Alzheimer type, in: Congenital and Acquired Cognitive Disorders ( R. Katzman, ed.), Raven Press, New York, pp. 153–160.Google Scholar
  46. Davies, P., 1979b, Neurotransmitter-related enzymes in senile dementia of the Alzheimer type, Brain Res. 171: 319–327.PubMedCrossRefGoogle Scholar
  47. Davies, P., and Maloney, A.J. F., 1976, Selective loss of cholinergic neurons in Alzheimer’s disease, Lancet 2: 1403.PubMedCrossRefGoogle Scholar
  48. Davies, P., and Reisullin, S., 1981, Postmortem stability of alpha-bungarotoxin binding sites in mouse and human brain, Brain Res. 216: 449–454.PubMedCrossRefGoogle Scholar
  49. Davies, P., and Verth, A. H., 1978, Regional distribution of muscarinic acetylcholine receptors in normal and Alzheimer’s type dementia brains, Brain Res. 138: 385–392.CrossRefGoogle Scholar
  50. Davies, P., Katzman, R., and Terry, R. D., 1980, Reduced somatostatin-like immunoreac-tivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementia, Nature 288: 279–280.PubMedCrossRefGoogle Scholar
  51. Davis, K. L., and Mohs, R. C, 1982, Enhancement of memory processes in Alzheimer’s disease with multiple-dose intravenous physostigmine, Am. J. Psychiatry 139: 1421–1424.PubMedGoogle Scholar
  52. De Belleroche, J., Gardiner, I. M., Hamilton, M. H., and Birdsall, J. M., 1985, Analysis of muscarinic receptor concentration and subtypes following lesion of rat substantia innominata, Brain Res. 340: 201–209.PubMedCrossRefGoogle Scholar
  53. Dekosky, S. T., Scheff, S. W., and Markesbery, W. R., 1985, Laminar organization of cholinergic circuits in human frontal cortex in Alzheimer’s disease and aging, Neurology 35: 1425–1431.PubMedGoogle Scholar
  54. Delabar, J. M., Goldgaber, D., Lamour, Y., Nicole, A., Huret, J-L., Degrouchy, J., Brown, P., Gajdusek, C., and Sinet, P.-M. 1987, ß-amyloid gene duplication in Alzheimer’s Disease and karyotypically normal Down Syndrome, Science 235: 1390–1392.PubMedCrossRefGoogle Scholar
  55. Delima, A. D., and Singer, W., 1986, Cholinergic innervation of the cat striate cortex: A choline acetyltransferase immunocytochemical analysis, J. Comp. Neurol. 250: 324–338.CrossRefGoogle Scholar
  56. Delong, M. R., 1971, Activity of pallidal neurons during movement, J. Neurophys. 34: 414–427.Google Scholar
  57. Deutsch, J. A., 1971, The cholinergic synapse and the site of memory, Science 174: 788–794.PubMedCrossRefGoogle Scholar
  58. Drachman, D. A., and Leavitt, J., 1974, Human memory and the cholinergic system: A relationship to aging? Arch. Neurol. 30: 113–121.PubMedGoogle Scholar
  59. Drachman, D. A., and Sahakian, B. J., 1980, memory and cognitive function in the elderly, Arch. Neurol. 37: 674–675.Google Scholar
  60. Dutar, P., Lamour, Y., Rascol, O., and Jobert, A., 1986a, Septo-hippocampal neurons in the rat: Further study of their physiological and pharmacological properties, Brain Res. 365: 325–334.PubMedCrossRefGoogle Scholar
  61. Dutar, P., Rascol, O., Jobert, A., and Lamour, Y., 1986b, Comparison of septo-hippocampal with basalo-cortical projection neurons in the rat: An electrophysiological approach, Neurosci. Lett. 63: 86–90.PubMedCrossRefGoogle Scholar
  62. Eckenstein, F., and Thoenen, H., 1983, Cholinergic neurons in the rat cerebral cortex demonstrated by immunohistochemical localization of choline acetyltransferase, Neurosci. Lett. 36: 211–215.PubMedCrossRefGoogle Scholar
  63. El-Defrawy, S. R., Boegman, R. J., Jhamandas, K., Beninger, R. J., and Shipton, L., 1986, Lack of recovery of cortical cholinergic function following quinolinic or ibotenic acid injections into the nucleus basalis magnocellularis in rats, Exp. Neurol. 91: 628–633.PubMedCrossRefGoogle Scholar
  64. Epelbaum, J., Lamour, Y., EnjalLamourbert, A., Hamon, M., Dutar, P., and Kordon, C, 1986, Modifications in the cortical regional distribution of choline acetyltransferase, somatostatin and somatostatin binding sites in the normal rat and following lesion of the nucleus basalis, Brain Res. 371: 376–379.PubMedCrossRefGoogle Scholar
  65. Feldberg, W., and Vogt, M., 1948, Acetylcholine synthesis in different regions of the nervous system, J Physiol. (London) 107: 372–381.Google Scholar
  66. Fine, A., Dunnett, S. B., Bjorklund, A., and Iversen, S. D., 1985, Cholinergic ventral forebrain grafts into the neocortex improve passive avoidance memory in a rat model of Alzheimer disease, Proc. Natl. Acad. Sci. USA 82: 5227–5230.PubMedCrossRefGoogle Scholar
  67. Fisher, R. S., Boylan, M. K., Hull, C. D., Buchwald, N. A., and Levine, M. S., 1985, Branched projections of pallidal and peripallidal neurons to neocortex and neostriatum: a double-labeling study in the cat, Brain Res. 326: 156–159.PubMedCrossRefGoogle Scholar
  68. Fonnum, F., 1970, Topographical and subcellular localization of choline acetyltransferase in the rat hippocampal region, J. Neurochem. 17: 1029–1037.PubMedCrossRefGoogle Scholar
  69. Foote, S. L., Freedman, R., and Oliver, A. P., 1975, Effects of putative neurotransmitters on neuronal activity in monkey auditory cortex, Brain Res. 86: 229–242.PubMedCrossRefGoogle Scholar
  70. Francis, P. T., Palmer, A. M., Sims, N. R., Bowen, D. M., Davison, A. N., Esiri, M. M., Neary, D., Snowden, J. S., Wilcock, G. K., 1985, Neurochemical studies of early-onset Alzheimer’s disease: Possible influence on treatment, N. Engl. J. Med. 313: 7–11.PubMedCrossRefGoogle Scholar
  71. Frotscher, M., and Leranth, C., 1985, Cholinergic innervation of the rat hippocampus as revealed by choline acetyltransferase immunocytochemistry: A combined light and electron microscopic study, J. Comp. Neurol. 239: 237–246.PubMedCrossRefGoogle Scholar
  72. Gage, F. H., and Bjorklund, A., 1986, Cholinergic septal grafts into the hippocampal formation improve spatial learning and memory in aged rats by an atropine-sensitive mechanism, J. Neurosci. 6: 2837–2847.PubMedGoogle Scholar
  73. Gauthier, S., Robitaille, Y., Quirion, R., and Leblanc, R., 1986, Antemortem laboratory diagnosis of Alzheimer’s disease, Prog. Neuro-Psychopharmacol. Biol. Psychiatry 10: 391–403.CrossRefGoogle Scholar
  74. German, D. C, Bruce, G., and Hersh, L. B., 1985, Immunohistochemical staining of cholinergic neurons in the human brain using a polyclonal antibody to human choline acetyl-transferase, Neurosci. Lett. 61: 1–5.PubMedCrossRefGoogle Scholar
  75. Goldgaber, D., Lerman, M. I., Mcbride, O. W., Saffiotti, U., and Gajdusek, D. C, 1987, Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s disease, Science 235: 877–880.PubMedCrossRefGoogle Scholar
  76. Gower, A. J., 1986, Lesioning of the nucleus basalis in the rat as a model of Alzheimer’s disease, TIPS, Nov., pp. 432–434.Google Scholar
  77. Greenfield, S., Cheramy, A., Leviel, V., and Glowinski, J., 1980, In vivo release of acetylcholinesterase in cat substantia nigra and caudate nucleus, Nature 284: 355–358.PubMedCrossRefGoogle Scholar
  78. Halliwell, J. V., and Adams, P. R., 1982, Voltage-clamp analysis of muscarinic excitation in hippocampal neurons, Brain Res. 250: 71–92.PubMedCrossRefGoogle Scholar
  79. Harbaugh, R. E., Roberts, D. W., Coombs, D. W., Saunders, R. L., and Reeder, T. M., 1984, Preliminary reports: Intracranial cholinergic drug infusion in patients with Alzheimer’s disease, Neurosurgery 15: 514–518.PubMedCrossRefGoogle Scholar
  80. Haroutunian, V., Kanof, P. D., and Davis, K. L., 1985, Pharmacological alleviation of cholinergic lesion induced memory deficits in rats, Life Sci. 37: 945–952.PubMedCrossRefGoogle Scholar
  81. Hartgraves, S. L., Mensah, P. L., and Keliv, P. H., 1982, Regional decreases of cortical choline acetyltransferase after lesions of the septal area and in the area of nucleus basalis magnocellularis, Neuroscience 7: 2369–2376.PubMedCrossRefGoogle Scholar
  82. Hebb, C. O., Krnjevic, K., and Silver, A., 1963, Effect of undercutting on the acetylcholinesterase and choline acetyltransferase activity in the cat cerebral cortex, Nature 198: 692–693.CrossRefGoogle Scholar
  83. Henke, H., and Lang, W., 1983, Cholinergic enzymes in neocortex, hippocampus and basal forebrain of non-neurological and senile dementia of Alzheimer-type patients, Brain Res. 267: 281–291.PubMedCrossRefGoogle Scholar
  84. Höhmann, C. F., Bear, M. F., and Ebner, F. F., 1985, Glutamic acid decarboxylase activity decreases in mouse neocortex after lesion of the basal forebrain, Brain Res. 333: 165–168.PubMedCrossRefGoogle Scholar
  85. Höhmann, C. F., Kitt, C. A., Wainer, B. H., Price, D. L., and Coyle, J. T., 1986, Distribution of ChAT immunoreactivity in the BALB/C mouse, Neurosci. Lett. Abstr. 26: 440.Google Scholar
  86. Hoover, D. B., Muth, E. A., and Jacobowitz, D. M., 1978, A mapping of the distribution of acetylcholine, choline acetyltransferase and acetylcholinesterase in discrete areas of rat brain, Brain Res. 153: 295–306.PubMedCrossRefGoogle Scholar
  87. Houser, C. R., Crawfod, G. D., Salvaterra, P. M., and Vaughn, J. E., 1985, Immu-nocytochemical localization of choline acetyltransferase in rat cerebral cortex: A study of cholinergic neurons and synapses, J. Comp. Neurol. 234: 17–34.PubMedCrossRefGoogle Scholar
  88. Ichimiya, Y., Arai, H., Kosaka, K., and Iizuka, R., 1986, Morphological and biochemical changes in the cholinergic and monoaminergic systems in Alzheimer-type dementia, Acta Neuropathol. 70: 112–116.PubMedCrossRefGoogle Scholar
  89. Inoue, M., Oomura, Y., Nishino, H., Aou, S., Sikdar, S. K., Hynes, M., Mizuno, Y., and Katabuchi, T., 1983, Cholinergic role in monkey dorsolateral prefrontal cortex during bar-press feeding behavior, Brain Res. 278: 185–194.PubMedCrossRefGoogle Scholar
  90. Jacobowitz, D. M., and Creed, J., 1983, Cholinergic projection sites of the nucleus of tractus diagonalis, Brain Res. Bull. 10: 365–372.PubMedCrossRefGoogle Scholar
  91. Jenni-Eiermann, S., Von Hahn, H. P., Honegger, C. G., Ulrich, J., 1984, Studies on neurotransmitter binding in senile dementia, Gerontology 30: 350–358.PubMedCrossRefGoogle Scholar
  92. Johnston, M. V., Mckinney, M., and Coyle, J. T., 1979, Evidence for a cholinergic projection to neocortex from neurons in basal forebrain, Proc. Natl. Acad. Sci. USA 76: 5392–5396.PubMedCrossRefGoogle Scholar
  93. Johnston, M. V., Mckinney, M., and Coyle, J. T., 1981a, Neocortical cholinergic innervation: A description of extrinsic and intrinsic components in the rat, Exp. Brain Res. 43: 159–172.PubMedCrossRefGoogle Scholar
  94. Johnston, M. V., Young, A. C, and Coyle, J. T., 19816, Laminar distribution of cholinergic markers in neocortex: effects of lesions, J. Neurosci. Res. 6: 597–607.Google Scholar
  95. Jones, E. G., Burton, H., Saper, C. B., and Swanson, L. W., 1976, Midbrain, diencephalic and cortical relationships of the basal nucleus of Meynert and associated structures in primates, J Comp. Neurol. 167: 385–398.PubMedCrossRefGoogle Scholar
  96. Kang, J., Lemaire, H.-G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Grzeschik, K. H., Multhaup, G., Beyreuther, K., and Muller-Hill, B., 1987, The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor, Nature 325: 733–736.PubMedCrossRefGoogle Scholar
  97. Karnovsky, M. J., and Roots, L., 1964, A “direct-coloring” thiocholine method for Cholinesterase, J Histochem. Cytochem. 12: 219–221.PubMedCrossRefGoogle Scholar
  98. Katzman, R., 1986, Medical progress—Alzheimer’s disease, N. Engl. J. Med. 314: 964–973.PubMedCrossRefGoogle Scholar
  99. Kay, D. W. K., Beamish, P., and Roth, M., 1964, Old-age mental disorders in Newcastel upon Tyne, I and II, Br. J. Psychiatry 110: 146–158, 668–682.PubMedCrossRefGoogle Scholar
  100. Kelly, J. S., Dodd, J., and Dingledine, R., 1979, Acetylcholine as an excitatory and inhibitory transmitter in the mammalian central nervous system, Prog. Brain Res. 49: 254–266.Google Scholar
  101. Kimura, H., Mcgeer, P. L., Peng, J. H., and Mcgeer, E. G., 1981, The central cholinergic system studied by choline acetyltransferase immunohistochemistry in the cat, J. Comp. Neurol. 200: 151–201.PubMedCrossRefGoogle Scholar
  102. Kitt, C. A., Price, D. L., Struble, R. G., Cork, L. C, Wainer, B. H., Becher, M. W., and Mobley, W. C, 1984, Evidence for cholinergic neuropathologies in senile plaques, Science 226: 1443–1445.PubMedCrossRefGoogle Scholar
  103. Kitt, C. A., Mitchell, S. J., Delong, M. R., Wainer, B. H., and Price, D. L., 1987, Fiber pathways of basal forebrain cholinergic neurons in monkeys, Brain Res. 406: 192–206.PubMedCrossRefGoogle Scholar
  104. Koelle, G., 1969, Significance of acetylcholinesterase in central synaptic transmission, Fed. Proc. 28: 95–100.PubMedGoogle Scholar
  105. Koelle, G. B., and Friedenwald, J. S., 1949, A histochemical method for localizing Cholinesterase activity, Proc. Soc. Exp. Biol. Med. 70: 617–622.PubMedGoogle Scholar
  106. Kohler, C, and Chan-Paley, V., 1983, Distribution of gamma aminobutyric acid containing neurons and terminals in the septal area, Anat. Embryol. 167: 53–65.PubMedCrossRefGoogle Scholar
  107. Kohler, C, Chan-Paley, V., and Wu, J.-Y., 1984, Septal neurons containing glutamic acid decarboxylase immunoreactivity project to the hippocampal region in the rat brain, Anat. Embryol. 169: 41–44.PubMedCrossRefGoogle Scholar
  108. Krnjevic, 1974, Chemical nature of synaptic transmission in vertebrates, Physiol. Rev. 54: 418–465.Google Scholar
  109. Krnjevic, K., and Phillis, J. W., 1963, Acetylcholine sensitive cells in cerebral cortex, J Physiol. (London) 166: 296–327.Google Scholar
  110. Krnjevic, K., and Ropert, N., 1982, Electrophysiological and pharmacological characteristics of facilitation of hippocampal population spikes by stimulation of the medial septum, Neuroscience 7: 2165–2183.PubMedCrossRefGoogle Scholar
  111. Kuhar, M. J., 1976, The anatomy of cholinergic neurons, in: Biochemistry of Cholinergic Functions ( A. M. Goldberg and I. Hanin, eds.), Raven Press, New York, pp. 3–27.Google Scholar
  112. Kuhar, M. J., and Yamamura, H. I., 1976, Localization of cholinergic muscarinic receptors in rat brain by light microscopic radioautography, Brain Res. 110: 229–243.PubMedCrossRefGoogle Scholar
  113. Lal, S., Wood, P. L., Kiely, M. E., Etienne, P., Gauthier, S., Stratford, J., Ford, R. M., Dastoor, D., and Nair, N. P. V., 1984, CSF acetylcholinesterase in dementia and in sequential samples of lumbar CSF, Neurobiol. Aging 5: 269–274.PubMedCrossRefGoogle Scholar
  114. Lamour, Y., Dutar, P., and Jobert, A., 1982a, Excitatory effect of acetylcholine on different types of neurons in the first somatosensory neocortex of the rat: Laminar distribution and pharmacological characteristics, Neuroscience 7: 1483–1494.PubMedCrossRefGoogle Scholar
  115. Lamour, Y., Dutar, P., and Jobert, A., 19826, Spread of acetylcholine sensitivity in the neocortex following lesion of the nucleus basalis, Brain Res. 252: 377–381.Google Scholar
  116. Lamour, Y., Dutar, P., and Jobert, A., 1985, Effects of TRH, cyclo-(His-Pro) and (3-Me-His2) TRH on identified septohippocampal neurons in the rat, Brain Res. 331: 343–347.PubMedCrossRefGoogle Scholar
  117. Lamour, Y., Dutar, P., Rascol, O., and Jobert, A., 1986, Basal forebrain neurons projecting to the rat frontoparietal cortex: Electrophysiological and pharmacological properties, Brain Res. 362: 122–131.PubMedCrossRefGoogle Scholar
  118. Lang, W., and Henke, H., 1983, Cholinergic receptor binding and autoradiography in brains of non-neurological and senile dementia of Alzheimer-type patients, Brain Res. 267: 271–280.PubMedCrossRefGoogle Scholar
  119. Larsson, T., Sjogren, T., and Jacobson, G., 1963, Senile dementia, Acta Psychiatr. Scand. 167 (Suppl): 39.Google Scholar
  120. Lehmann, J., Nagy, J. I., Atmadja, S., and Fibiger, H. C, 1980, The nucleus basalis magnocellularis: the origin of a cholinergic projection to the neocortex of the rat, Neuroscience 5: 1161–1174.PubMedCrossRefGoogle Scholar
  121. Lehmann, J., Struble, R. G., Antuono, P. G., Coyle, J. T., Cork, L. C, and Price, D. L., 1984, Regional heterogeneity of choline acetyltransferase activity in primate neocortex, Brain Res. 322: 361–364.PubMedCrossRefGoogle Scholar
  122. Lemann, W., and Saper, C. B., 1985, Evidence for a cortical projection to the magnocellular basal nucleus in the rat: an electron microscopic axonal transport study, Brain Res. 334: 339–343.PubMedCrossRefGoogle Scholar
  123. Levey, A. L., Wainer, B. H., Mufson, E. J., and Mesulam, M. M., 1983, Co-localization of acetylcholinesterase and choline-acetyltransferase in the rat cerebrum, Neuroscience 9: 9–22.PubMedCrossRefGoogle Scholar
  124. Levey, A. I., Wainer, B. H., Rye, D. B., Mufson, E. J., and Mesulam, M.-M., 1984, Choline acetyltransferase-immunoreactive neurons intrinsic to rodent cortex and distinction from acetylcholinesterase-positive neurons, Neuroscience 13: 341–353.PubMedCrossRefGoogle Scholar
  125. Lewis, P. R., and Shute, C. C. D., 1967, The cholinergic limbic system: Projections to the hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system and the subfornical organ and supraoptic crest, Brain Res. 90: 521–540.Google Scholar
  126. London, E. D., Mckinney, M., Dam, M., Ellis, A., and Coyle, J. T., 1984, Decreased cortical glucose utilization after ibotenate lesion of the rat ventromedial globus pallidus, J Cerebral Blood Flow Metabol. 4: 381–390.CrossRefGoogle Scholar
  127. Lysakowski, A., Wainer, B. H., Rye, D. B., Bruce, G., and Hersh, L. B., 1986, Cholinergic innervation displays strikingly different laminar preferences in several cortical areas, Neurosci. Lett. 64: 102–108.PubMedCrossRefGoogle Scholar
  128. Marquis, J. K., Völliger, L., Direnfeld, L. K., and Freedman, M., 1984, Assays of Cholinesterase activity in plasma, erythrocytes and cerebrospinal fluid (CSF) of SDAT patients and normal controls, in: Alzheimers Disease: Advances in Basic Research and Therapies (R. J. Wurtman, S. H. Corkin, and J. H. Growson, eds.), Proceedings of the Third Meeting of the International Study Group on the Treatment of Memory Disorders associated with Aging, p. 458, Center for Brain Sciences and Metabolism, Charitable Trust, Zurich.Google Scholar
  129. Mash, D. C, and Mesulam, M. M., 1986, Muscarine receptor distributions within architectonic subregions of the primate cortex, Soc. Neurosci. Abstr. 12: 809.Google Scholar
  130. Mash, D. C, Glynn, D. D., and Potter, L. T., 1985, Loss of M2 muscarine receptors in the cerebral cortex in Alzheimer’s disease and experimental cholinergic denervation, Science 228: 1115–1117.PubMedCrossRefGoogle Scholar
  131. Matthews, D. A., Salvaterra, P. M., Crawford, G. D., House, C. R., and Vaughn, J. E., 1987, An immunocytochemical study of choline acetyltransferase-containing neurons and axon terminals in normal and partially deafferented hippocampal formation, Brain Res. 402: 30–43.PubMedCrossRefGoogle Scholar
  132. Mccormick, D. A., and Prince, D. A., 1985, Two types of muscarinic response to acetylcholine in mammalian cortical neurons, Proc. Natl. Acad. Sci. USA 82: 6344–6348.PubMedCrossRefGoogle Scholar
  133. Mcgeer, P. L., Mcgeer, E. G., Singh, V. K., and Chase, W. H., 1974, Choline acetyltransferase localization in the central nervous system by immunocytochemistry, Brain Res. 81: 373–379.PubMedCrossRefGoogle Scholar
  134. Mcgeer, P. L., Mcgeer, E. G., Suzuki, J., Dolman, C. E., and Nagai, T., 1984, Aging Alzheimer’s disease, and the cholinergic system of the basal forebrain, Neurology 34: 741–745.PubMedGoogle Scholar
  135. Mckinney, M., and Coyle, J. T., 1982, Regulation of neocortical muscarinic receptors: Effects of drug treatment and lesions, J. Neurosci. 2: 97–105.PubMedGoogle Scholar
  136. Mckinney, M., Coyle, J. T., and Hedreen, J. C, 1983, Topographic analysis of the innervation of the rat neocortex and hippocampus by the basal forebrain cholinergic system, J Comp. Neurol. 217: 103–121.PubMedCrossRefGoogle Scholar
  137. Meibach, R. C, and Siegel, A., 1977, Efferent connections of the hippocampal formation in the rat, Brain Res. 124: 197–224.PubMedCrossRefGoogle Scholar
  138. Mesulam, M-M., and Mufson, E. J., 1984, Neural inputs into the nucleus basalis of the substantia innominata (Ch4) in the rhesus monkey, Brain 107: 253–274.PubMedCrossRefGoogle Scholar
  139. Mesulam, M-M., Mufson, E. J., Levey, A. L, and Wainer, B. H., 1983, Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata) and hypothalamus in the rhesus monkey, J Comp. Neurol. 214: 170–197.PubMedCrossRefGoogle Scholar
  140. Mesulam, M-M., Mufson, E.J. Levey, A. I., and Wainer, B. H., 1984, Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry, Neuroscience 12: 669–686.PubMedCrossRefGoogle Scholar
  141. Mesulam, M. M., Volicer, L., Marquis, J. K., Mufson, E. J., and Green, R. C, 1986, Systematic Regional Differences in the cholinergic innervation of the primate cerebral cortex: Distribution of enzyme activities and some behavioral implications, Ann. Neurol. 19: 144–151.PubMedCrossRefGoogle Scholar
  142. Mitchell, S. J., Richardson, R. T., Baker, F. H., and Delong, M. R., 1983, Electrophysiological and functional characteristics of neurons in the nucleus basalis of Meynert in macaque monkeys, Soc. Neurosci. Abstr. 8: 212.Google Scholar
  143. Mohs, R. C, Davis, K. L., and Levey, M. L., 1981, Partial reversal of anticholinergic amnesia by choline chloride, Life Sci. 29: 1317–1323.PubMedCrossRefGoogle Scholar
  144. Mohs, R. C, Davis, B. M., Johns, C. A., Mathe, A. A., Greenwald, B. S., Horvath, T. B., and Davis, K. L., 1985, Oral physostigmine treatment of patients with Alzheimer’s disease, Am. J. Psychiatry 142: 28–33.PubMedGoogle Scholar
  145. Morrow, A. L., Loy, R., and Creese, L, 1983, Septal deafferentation increases hippocampal adrenergic receptors: Correlation with sympathetic axon sprouting, Proc. Natl. Acad. Sci. USA 80: 6718–6722.PubMedCrossRefGoogle Scholar
  146. Murray, C. L., and Fibiger, H. C, 1985, Learning and memory deficits after lesions of the nucleus basalis magnocellularis: Reversal by physostigmine, Neuroscience 14: 1025–1032.PubMedCrossRefGoogle Scholar
  147. Murray, C. L., and Fibiger, H. C, 1986, Pilocarpine and physostigmine attenuate spatial memory impairments produced by lesions of the nucleus basalis magnocellularis, Behav. Neurosci. 100: 23–32.PubMedCrossRefGoogle Scholar
  148. Nagai, T., Kimura, H., Maeda, T., Mcgeer, P. L., Peng, F., and Mcgeer, E. G., 1982, Cholinergic projections from the basal forebrain of rat to the amygdala, J. Neurosci. 2: 513–520.PubMedGoogle Scholar
  149. Nakamura, Y., Hassler, R., Kataoka, Y., Bak, I. J., and Kim, J. S., 1976, Regional distribution of choline acetyltransferase and acetylcholinesterase activity in baboon brain, Folia Psychiatri Neurol. Jpn. 30: 185–194.Google Scholar
  150. Nakano, I., and Hirano, A., 1982, Loss of large neurons of the medial septal nucleus in an autopsy case of Alzheimer’s disease (abstract), J. Neuropathol. Exp. Neurol. 41: 341.CrossRefGoogle Scholar
  151. Nordberg, A., and Winblad, B., 1986, Brain nicotinic and muscarinic receptors in normal aging and dementia, in: Alzheimer’s and Parkinson’s Disease: Strategies for Research and Development ( A. Fisher, I. Hanin, and C. Lachman, eds), Plenum Press, New York, pp. 95–108.Google Scholar
  152. Nordberg, A., Adolfsson, R., Marcusson, J., and Winblad, B., 1982, Cholinergic receptors in the hippocampus in normal aging and dementia of Alzheimer type, in: The Aging Brain: Cellular and Molecular Mechanisms of Aging in the Nervous System, Vol. 20: Aging ( E. Giacobini, G. Filogram, G. Giacobini, and A. Vernadakis, eds.), Raven Press, New York, pp. 231–245.Google Scholar
  153. Nordberg, A., Larsson, C, Adolfsson, R., Alafuzoff, I., and Winblad, B., 1983, Muscarinic receptor compensation in hippocampus of Alzheimer patients, J. Neural Transmiss. 56: 13–19.CrossRefGoogle Scholar
  154. Olton, D. S., Wenk, G. L., and Mos, R. C, 1987, Dementia: Animal models of the cognitive impairments produced by degeneration of the basal forebrain cholinergic system, in: Psychopharmacology: A Generation of Progress, Raven Press, New York.Google Scholar
  155. Palacios, J. M., 1982, Autoradiographic localization of muscarinic cholinergic receptors in the hippocampus of patients with senile dementia, Brain Res. 243: 173–175.PubMedCrossRefGoogle Scholar
  156. Pearson, R. C. A., Sofroniew, M. V., Cuello, A. C, Powell, T. P., Eckenstein, F., Esiri, M. M., and Wilcock, G. K., 1983, Persistance of cholinergic neurons in the basal nucleus in a brain with senile dementia of the Alzheimer’s type demonstrated by immunohisto-chemical staining for choline acetyltransferase, Brain Res. 289: 375–379.PubMedCrossRefGoogle Scholar
  157. Pedata, F., Lo Conte, G., Sorbi, S., Pepeu, I. M., and Pepeu, G., 1982, Changes in high affinity choline uptake in rat cortex following lesions of the magnocellular forebrain nuclei, Brain Res. 233: 359–367.PubMedCrossRefGoogle Scholar
  158. Pepeu, G., Casamenti, F., Pedata, F., Cosi, C, and Pepeu, I. M., 1986, Are the neurochemical and behavioural changes induced by lesins of the nucleus basalis in the rat a model of Alzheimer’s disease? Prog. Neuro-Psychopharmacol. Biol. Psychiatry 10: 541–551.Google Scholar
  159. Perry, E. K., Gibson, P. H., Blessed, G., Perry, R. H., and Tomlinson, B. E., 1977a, Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue, J. Neurol. Sci. 34: 247–265.PubMedCrossRefGoogle Scholar
  160. Perry, E. K., Perry, R. H., Blessed, G., and Tomlinson, B. E., 1977b, Necropsy evidence of central cholinergic deficits in senile dementia (letter to the ed.), Lancet 1:189.Google Scholar
  161. Perry, E. K., Tomlinson, B. E., Blessed, G., Bergmann, K., Gibson, P. H., and Perry, R. H., 1978, Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia, Br. Med. J. 2: 1457–1459.PubMedCrossRefGoogle Scholar
  162. Perry, E. K., Blessed, G., Tomlinson, B. E., Perry, R. H., Crow, T. J., Cross, A. J., Dockray, G. J., Dimaline, R., and Arregui, A., 1981, Neurochemical activities in human temporal lobe related to aging and Alzheimer-type changes, Neurobiol. Aging 2: 251–256.PubMedCrossRefGoogle Scholar
  163. Perry, R. H., Candy, J. M., Perry, E. K., Irving, D., Blessed, G., Fairbairn, A. F., and Tomlinson, B. E., 1982, Extensive loss of choline acetylransferase activity is not reflected by neuronal loss in the nucleus of Meynert in Alzheimer’s disease, Neurosci. Lett. 33: 311–315.PubMedCrossRefGoogle Scholar
  164. Perry, E. K., Atack, J. R., Perry, R. H., Hardy, J. A., Dodd, P. R., Edwardson, J. A., Blessed, G., Tomlinson, B. E., and Fairbairn, A. F., 1984, Intralaminar neurochemical distributions in human mid tempo ral cortex: Comparison between Alzheimer’s disease and the normal, J. Neurochem. 42: 1402–1410.PubMedCrossRefGoogle Scholar
  165. Phillis, J. W., 1968, Acetylcholine release from the cerebral cortex: Its role in cortical arousal, Brain Res. 7: 378–389.PubMedCrossRefGoogle Scholar
  166. Pomara, N., Bagne, C. A., Stanley, M., and Yarbrough, G. G., 1986, Prospective strategies for cholinergic interventions in Alzheimer’s disease, Prog. Neuro-Psychopharmacol. Biol. Psychiatry 10: 553–569.CrossRefGoogle Scholar
  167. Pope, A., Hess, H. H., and Levin, E., 1965, Neurochemical pathology of the cerebral cortex in presenile dementias, Trans. Am. Neurol. Assoc. 89: 15–16.Google Scholar
  168. Potter, L. T., Flynn, D. D., Hanchett, H. E., Kalinoski, D. L., Luber-Narod, J., and Mash, D. C, 1984, Independent Ml and M2 receptors: Ligands, autoradiography and functions, Trends Pharmacol. Sci. l (Suppl): 22–31.Google Scholar
  169. Price, J. L., and Stern, R., 1983, Individual cells in the nucleus basalis-diagonal band complex have restricted axonal projections to the cerebral cortex in the rat, Brain Res. 269: 352–356.PubMedCrossRefGoogle Scholar
  170. Prusky, G., and Cynader, M., 1986, The distribution of muscarinic and nicotinic acetyl-cholinergic binding sites in the developing cat visual cortex, Soc. Neurosci. Abstr. 12: 1372.Google Scholar
  171. Quirion, R., Richard, J., Dam, T. V., 1985, Evidence for the existence of serotonin type-2 receptors on cholinergic terminals in rat cortex, Brain Res. 333: 345–349.PubMedCrossRefGoogle Scholar
  172. Reisine, T. D., Yamamura, H. I., Bird, E. D., and Enna, S. J., 1978, Pre- and postsynaptic neurochemical alternatives in Alzheimer’s disease, Brain Res. 159: 477–481.PubMedCrossRefGoogle Scholar
  173. Richardson, R. T., and Delong, M. R., 1986, Nucleus basalis of Meynert neuronal activity during a delayed response task in monkey, Brain Res. 399: 364–368.PubMedCrossRefGoogle Scholar
  174. Richter, J. A., Perry, B. K., and Tomlinson, B. E., 1980, Acetylcholine and choline levels in postmortem human brain tissue: preliminary observations in Alzheimer’s disease, Life Sci. 26: 1680–1689.CrossRefGoogle Scholar
  175. Rigdon, G. C, and Prich, J. H., 1986, Nucleus basalis involvement in conditioned neuronal responses in the rat frontal cortex, J. Neurosci. 6: 2535–2542.PubMedGoogle Scholar
  176. Rinne, J. O., Rinne, J. K., Laakso, K., Paijarvi, Rinne, U. K., 1984, Reduction in muscarinic receptor binding in limbic areas of Alzheimer brain, J. Neurol. Neurosurg. Psychiatry 47: 651–653.PubMedCrossRefGoogle Scholar
  177. Rinne, J. O., Laakso, K., Lonnberg, P., Molsa, P., Paljarvi, L., Rinne, J. K., Sako, E., and Rinne, U. K., 1985, Brain muscarinic receptors in senile dementia, Brain Res. 336: 19–25.PubMedCrossRefGoogle Scholar
  178. Rogers, J., and Morrison, J. G., 1985, Quantitative morphology and regional and laminar distributions of senile plaques in Alzheimer’s Disease, J. Neurosci. 5: 2801–2808.PubMedGoogle Scholar
  179. Rolls, E. T., Sanghera, M. K., and Roper-Hall, A., 1979, The latency of activation of neurones in the lateral hypothalamus and substantia innominata during feeding in the monkey, Brain Res. 164: 121–135.PubMedCrossRefGoogle Scholar
  180. Rosenberg, G. S., and Davis, K. L., 1982, The use of cholinergic precursors in neuropsychiatric diseases, Am. J. Clin. Nutri. 36: 709–720.Google Scholar
  181. Rossier, J., 1977, Choline acetyltransferase: A review with special reference to its cellular and subcellular localization, Int. Rev. Neurobiol. 20: 283–337.PubMedCrossRefGoogle Scholar
  182. Rossor, M. N., Garrett, N.J., Johnson, A. L., Mountjoy, C. Q., Roth, M., and Iversen, L L., 1982a, A post-mortem study of cholinergic and GAB A systems in senile dementia, Brain 10: 313–339.CrossRefGoogle Scholar
  183. Rossor, M. N., Svendsen, C, Hunt, S. P., Mountjoy, C. Q., Roth, M., and Iversen, L. L., 1982b, The substantia innominata in Alzheimer’s disease: A histochemical and biochemical study of cholinergic marker enzymes, Neurosci. Lett. 28: 217–222.PubMedCrossRefGoogle Scholar
  184. Rossor, M. N., Iversen, L. L., Reynolds, G. P., Mountjoy, C. Q., and Roth, M., 1984, Neurochemical characteristics of early and late onset types of Alzheimer’s disease, Br. Med. J. 288: 961–964.CrossRefGoogle Scholar
  185. Roth, M., Tomlinson, B. E., and Blessed, G., 1967, The relationship between measures of dementia and of degenerative changes in the cerebral grey matter of elderly subjects, Proc. R. Soc. Med. 60: 254–259.PubMedGoogle Scholar
  186. Rotter, A., Birdsall, N.J. M., Burgen, A. S. V., Field, P. M., Hulme, E. C., and Raisman, G., 1979, Muscarinic receptors in the central nervous system of the rat. I. Technique for autoradiographic localization of the binding of [3H]propylbenzilylcholine mustard and its distribution in the forebrain, Brain Res. Rev. 1: 141–165.CrossRefGoogle Scholar
  187. Rye, D. B., Wainer, B. H., Mesulam, M.-M., Mufson, E. J., and Saper, C. B., 1984, Cortical projections arising from the basal forebrain: study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase, Neuroscience 13: 627–643.PubMedCrossRefGoogle Scholar
  188. Rylett, R. G., Ball, M. J., and Colhoun, E. H., 1983, Evidence for high affinity choline transport in synaptosomes prepared from hippocampus and neocortex of patients with Alzheimer’s disease, Brain Res. 289: 169–175.PubMedCrossRefGoogle Scholar
  189. Saper, C. B., 1984, Organization of cerebral cortical afferent systems in the rat. II. Magno-cellular basal nucleus, J. Comp. Neurol. 222: 313–342.PubMedCrossRefGoogle Scholar
  190. Saper, C. B., German, D. C, and White, C. L. III, 1985, Neuronal pathology in the nucleus basalis and associated cell groups in senile dementia of the Alzheimer’s type: possible role in cell loss, Neurology 35: 1089–1095.PubMedGoogle Scholar
  191. Schwartz, A. S., and Kohlstaedt, E. V., 1986, Physostigmine effects in Alzheimer’s disease: Relationship to dementia severity, Life Sci. 38: 1021–1028.PubMedCrossRefGoogle Scholar
  192. Sethy, V. M., Kuhar, M. J., Roth, R. H., Van Woert, H. H., Aghajaniau, G. K., 1973, Cholinergic neurons: Effect of acute septal lesion on ACh and Ch content of rat hippocampus, Brain Res. 55: 681–686.CrossRefGoogle Scholar
  193. Shimohama, S., Taniguchi, T., Fujiwara, M., and Kameyama, M., 1986, Changes in nicotinic and muscarinic cholinergic receptors in Alzheimer-type dementia, J. Neurochem. 46: 288–293.PubMedCrossRefGoogle Scholar
  194. Shute, C. C. D., and Lewis, P. R., 1967, The ascending cholinergic reticular system: Neocortical, olfactory and subcortical projections, Brain 90: 497–520.PubMedCrossRefGoogle Scholar
  195. Silitto, A. M., and Kemp, J. A., 1983, Cholinergic modulation of the functional organization of the cat visual cortex, Brain Res. 289: 143–155.CrossRefGoogle Scholar
  196. Sims, N. R., Bowen, D. M., Smith, C. C, Flack, R. H., Davison, A. N., Snowden, J. S., and Neary, D., 1980, Glucose metabolism and acetylcholine synthesis in relation to neuronal activity in Alzheimer’s disease, Lancet 1: 333–336.PubMedCrossRefGoogle Scholar
  197. Sims, N. R., Bowen, D. M., Allen, S. J., Smith, LI., Neary, D., Thomas, D. J., and Davison, A. W., 1983, Presynaptic cholinergic dysfunction in patients with dementia, J. Neurochem. 40: 503–509.PubMedCrossRefGoogle Scholar
  198. Sitaram, N., Weingartner, H., Caine, E. D., and Gillin, J. C., 1978, Choline: selective enhancement of serial learning and encoding of low imagery words in man, Life Sci. 22: 1555–1560.PubMedCrossRefGoogle Scholar
  199. Smith, R. C, Ho, B. T., Hus, L., Vroulis, G., and Claghorm, J., 1982, Cholinesterase enzymes in the blood of patients with Alzheimer’s disease, Life Sci. 30: 543–546.PubMedCrossRefGoogle Scholar
  200. Sofroniew, M. V., Eckenstein, F., Thoenin, H., and Cuello, A. C, 1982, Topography of choline acetyltransferase-containing neurons in the forebrain of the rat, Neurosci. Lett. 33: 7–12.PubMedCrossRefGoogle Scholar
  201. Soininen, H., Halonen, T., and Riekkinen, P. J., 1981, Acetylcholinesterase activities in cerebrospinal fluid of patients with senile dementia of Alzheimer type, Acta Neurol. Scand. 64: 217–224.PubMedCrossRefGoogle Scholar
  202. Spehlman, R., and Smathers, C. C, 1974, The effects of acetylcholine and of synaptic stimulation on the sensorimotor cortex of cats. II. Comparison of the neuronal responses to reticular and other stimuli, Brain Res. 74: 243–253.CrossRefGoogle Scholar
  203. Spokes, E. G. S., 1979, An analysis of factors influencing measurements of dopamine, noradrenaline, glutamic acid decarboxylase and choline acetylase in human post-mortem brain, Brain 102: 333–346.PubMedCrossRefGoogle Scholar
  204. St. George-Hyslop, P., Tanzi, R. E., Polinsky, R. J., Haines, J. L., Nee, L., Watkins, P. C, Myers, R. H., Feldman, R. G., Pollen, D., Drachman, D., Growdon, J., Bruni, A., Foncin, J.-F., Salmon, D., Frommelt, P., Amaducci, L., Sorbi, S., Piacentini, S., Stewart, G. K., Hobbs, W. J., Conneally, M., and Gusella, J. F., 1987, The genetic defect causing familial Alzheimer’s Disease maps on chromosome 21, Science 235: 885–889.PubMedCrossRefGoogle Scholar
  205. Stone, T. W., 1972, Cholinergic mechanisms in the rat somatosensory cerebral cortex, J. Physiol. (London) 225: 485–489.Google Scholar
  206. Storm-Mathisen, J., 1974, Choline-acetyltransferase and acetylcholinesterase in the fascia dentata following lesions of the entorhimal afferents, Brain Res. 80: 181–197.PubMedCrossRefGoogle Scholar
  207. Struble, R. G., Cork, L. C, Whitehouse, P. J., and Price, D. L., 1982, Cholinergic innervation in neuritic plaques, Science 216: 413–415.PubMedCrossRefGoogle Scholar
  208. Summers, W. K., Majovski, L. V., Marsh, G. M., Tachiki, K., and Kling, A., 1986, Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type, N. Engl. J. Med. 315: 1241–1287.PubMedCrossRefGoogle Scholar
  209. Sunderland, T., Tariot, P., Murphy, D. L., Weingartner, H., Mueller, E. A., and Cohen, R. M., 1985, Scopolamine challenges in Alzheimer’s Disease, Psychopharmacology 87: 247–249.PubMedCrossRefGoogle Scholar
  210. Swanson, L. W. and Cowan, W. M., 1977, An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat, J. Comp. Neurol. 172: 49–84.PubMedCrossRefGoogle Scholar
  211. Tagliavini, F., and Pilleri, G., 1983, Neuronal counts in basal nucleus of Meynert in Alzheimer’s disease and in simple senile dementia, Lancet 1: 469–470.PubMedCrossRefGoogle Scholar
  212. Tanzi, R. E., Gusella, J. F., Watkins, P. C, Bruns, G. A. P., St. George-Hyslop, P., Van Keuren, M. L., Patterson, D., Pagan, S., Kurnit, D. M., and Neve, R. L., 1987, Amyloid ß protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus, Science 235: 880–883.PubMedCrossRefGoogle Scholar
  213. Thal, L. J., Fuld, P. A., Masur, D. M., and Sharpless, N. S., 1983, Oral physostigmine and lecithin improve memory in Alzheimer disease, Ann. Neurol. 13: 491–496.PubMedCrossRefGoogle Scholar
  214. Thal, L. J., Masur, D. M., Sharpless, N. S., Fuld, P. A., and Davies, P., 1986, Acute and chronic effects of oral physostigmine and lecithin in Alzheimer’s disease, Prog. Neuro-Psychopharmacol. Biol. Psychiatry 10: 627–636.Google Scholar
  215. Tune, L., Gucker, S., Folstein, M., Oshida, L., and Coyle, J. T., 1985, Cerebrospinal fluid acetylcholinesterase activity in senile dementia of the Alzheimer type, Ann. Neurol. 17: 46–48.PubMedCrossRefGoogle Scholar
  216. Vincent, S. R., Saioh, K., and Fibiger, H. C, 1986, The localization of central cholinergic neurones, Prog. Neuro-Psychopharmacol. Biol. Psychiatry 10: 637–656.Google Scholar
  217. Wainer, B. H., Bolam, J. P., Freund, T. F., Henerson, Z., Totterdell, S., and Smith, A. D., 1984, Cholinergic synapses in the rat brain: a correlated light and electron microscopic immunohistochemical study employing a monoclonal antibody against choline acetyltransferase, Brain Res. 308: 69–76.PubMedCrossRefGoogle Scholar
  218. Walker, L. C, Kitt, C. A., Delong, M. R., and Price, D. L., 1985, Noncollateral projections of basal forebrain neurons to frontal and parietal neocortex in primates, Brain Res. Bull. 15: 307–314.PubMedCrossRefGoogle Scholar
  219. Walker, L. C, Brizzee, K. R., Kaack, M. B., and Price, D. L., 1986, Choline acetyltransferase and acetylcholinesterase activities in neocortex and hippocampus of squirrel monkey (Saimiri sciureus), Am. J. Primatol. 11: 195–210.CrossRefGoogle Scholar
  220. Wamsley, J. K., Zarbin, M. A., Birdsall, N.J. M., and Kuhar, M. J., 1980, Muscarinic cholinergic receptors: autoradiographic localization of high and low affinity agonist binding sites, Brain Res. 200: 1–12.PubMedCrossRefGoogle Scholar
  221. Watson, M., Vickroy, T. W., Fibiger, H. C, Roeske, W. R., and Yamamura, H. I., 1985, Effects of bilateral ibotenate-induced lesions of the nucleus basalis magnocellularis upon selective cholinergic biochemical markers in the rat anterior cerebral cortex, Brain Res. 346: 387–391.PubMedCrossRefGoogle Scholar
  222. Wenk, G. L., and Engisch, K. L., 1986, [3H]Ketanserin (Serotonin Type 2) binding increases in rat cortex following basal forebrain lesions with ibotenic acid, J. Neurochem. 47: 845–849.Google Scholar
  223. Wenk, G. L., Hughey, D. J., and Olton, D. S., 1987, Basal forebrain cholinergic neurons and Alzheimer’s disease, in: Animal Models of Dementia: A Synaptic Neurochemical Perspective, Vol. 3, Neurology and Neurobiology ( J. T. Coyle, ed.), pp. 81 - 101, Alan R. Liss, New York.Google Scholar
  224. Wenk, H., Bigl, V., and Meyer, U., 1980, Cholinergic projections from magnocellular nuclei of the basal forebrain to cortical areas in rats, Brain Res. Rev. 2: 296–316.CrossRefGoogle Scholar
  225. Wettstein, A., and Spiegel, R., 1984, Clinical trials with the cholinergic drug RS 86 in Alzheimer’s disease (AD) and senile dementia of the Alzheimer type (SDAT), Psychopharmacology 84: 572–573.PubMedCrossRefGoogle Scholar
  226. Whitacker, V. P., and Sheridan, M. N., 1965, The morphology and acetylcholine content of isolated cerebral cortical synaptic vesicles, J. Neurochem. 12: 363–372.CrossRefGoogle Scholar
  227. White, P., Goodhardt, M. J., Keet, J. P., Hiley, C. R., Carrasco, L. H., Williams, I. E. I., and Bowen, D. M., 1977, Neocortical cholinergic neurons in elderly people, Lancet 1: 668–670.PubMedCrossRefGoogle Scholar
  228. Whitehouse, P. J., Price, D. L., Clark, A. W., Coyle, J. T., and Delong, M. R., 1981, Alzheimer disease: Evidence for selective loss of cholinergic neurons in the nucleus basalis, Ann. Neurol. 10: 122–126.PubMedCrossRefGoogle Scholar
  229. Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T., and Delong, M. R., 1982, Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain, Science 215: 1237–1239.PubMedCrossRefGoogle Scholar
  230. Whitehouse, P. J., Kopajtic, T., Jones, B. E., Kuhar, M. J., and Price, D. L., 1985, An in vitro receptor autoradiographic study of muscarinic cholinergic receptor subtypes in the amygdala and neocortex of patients with Alzheimer’s disease, Neurology 35 (Suppl 1): 217.Google Scholar
  231. Whitehouse, P. J., Martino, A. M., Antuono, P. G., Lowenstein, P. R., Coyle, J. T., Price, D. L., Kellar, K.J., 1986, Nicotinic acetylcholine binding in Alzheimer’s disease, Brain Res. 371: 146–151.PubMedCrossRefGoogle Scholar
  232. Wieraszko, A. B., Oderfeld-Nowak, B., and Narkiewicz, O., 1977, Ipsi and contralateral changes in acetylcholinesterase and choline acetyltransferase activities in hippocampus following unilateral septal lesions in the rat, Neuroscience 2: 649–654.PubMedCrossRefGoogle Scholar
  233. Wilcock, G. K., Esiri, M. M., Bowen, D. M., and Smith, C. C, 1982, Alzheimer’s disease: Correlation of cortical choline acetyltransferase activity with the severity of dementia and histologic abnormalities, J. Neurol. 57: 407–417.Google Scholar
  234. Wilcock, G. K., Esiri, M. M., Bowen, D. M., and Smith, C. C, 1983, The nucleus basalis in Alzheimer disease, cell counts and cortical biochemistry, Neuropathol. Appl. Neurobiol. 9: 175–179.PubMedCrossRefGoogle Scholar
  235. Wood, P. L. Etienne, P., Lal, S., Nair, N. P. V., Finlayson, M. H., Gautheir, S., Palo, J., Haltia, M., Paetau, A., Bird, E. D., 1983, A post-mortem comparison of the cortical cholinergic system in Alzheimer’s disease and Pick’s disease, J. Neurol. Sci. 62: 211–217.PubMedCrossRefGoogle Scholar
  236. Woolf, N.J., Eckenstein, F., and Butcher, L. L., 1983, Cholinergic projections revealed by choline acetyltransferase (ChAT) immunohistochemistry and fluorescent tracer histology performed on the same tissue section, Soc. Neurosci. Abstr. 9: 967.Google Scholar
  237. Yamamura, H. I., and Snyder, S. H., 1974, Muscarinic cholinergic binding in rat brain, Proc. Natl. Acad. Sci USA 71: 1725–1729.PubMedCrossRefGoogle Scholar
  238. Yamamura, H. I., Kuhar, M. J., Greenberg, D., and Snyder, S. H., 1974, Muscarinic cholinergic receptor binding: regional distribution in monkey brain, Brain Res. 66: 541–546.CrossRefGoogle Scholar
  239. Zaczek, R., Hedreen, J. C. and Coyle, J. T., 1979, Evidence for a hippocampal-septal glutamatergic pathway in the rat, Exp. Neurol. 65: 145–156.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Christine Höhmann
    • 1
  • Piero Antuono
    • 1
  • Joseph T. Coyle
    • 1
  1. 1.Division of Child Psychiatry, Departments of Psychiatry, Pharmacology, Neuroscience, and PediatricsThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations