Advertisement

Rigid and Fluctuating Surfaces: A Series of Synchrotron X-ray Scattering Studies of Interacting Stacked Membranes

  • C. R. Safinya
Part of the NATO ASI Series book series (NSSB, volume 211)

Abstract

In these lectures we discuss fluctuation phenomena encountered in interacting multilayered fluid membranes using synchrotron x-ray scattering as the primary tool. We consider very dilute Lα phases with inter-layer separations as large as ≈600 Å. While most Lα phases consist of flat membranes with large bending rigidity kc ≫ kBT, with their interlayer interactions determined by detailed microscopic interactions such as hydration and van der Waals, the stability of these phases is due to an effectively long-range interaction arising from the mutual hinderance of fluctuating membranes with a very small rigidity kc ≈ kBT. This regime, which because of its entropic origin exhibits universality, can be accessed from the microscopic regime by thinning and thus lowering the modulus kc of an initially rigid membrane.

Keywords

Water Dilution Flexible Membrane Interlayer Interaction Rigid Membrane Hydration Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Dimeglio, M. Dvolaitsky, and C. Taupin, 89:871 (1985); J. M. Dimeglio, M. Dvolaitsky, L. Leger, and C. Taupin, Phys. Rev. Lett., 54:1686 (1985).CrossRefGoogle Scholar
  2. 2.
    C. R. Safinya, D. Roux, G. S. Smith, S. K. Sinha, P. Dimon, N. A. Clark, and A. M. Bellocq, Phys. Rev. Lett., 57:2718 (1986).CrossRefGoogle Scholar
  3. 3.
    D. Roux and C. R. Safinya, J. Phys. (Paris), 49:307 (1988).CrossRefGoogle Scholar
  4. 4.
    F. Larche, J. Appel, G. Porte, P. Bassereau, and J. Marignan, Phys. Rev. Lett., 56:1700 (1986); P. Bassereau, J. Marignan, G. Porte, J. Physique, 48:673 (1987).CrossRefGoogle Scholar
  5. 5.
    C. R. Safinya, E. Sirota, D. Roux, and G. S. Smith, Phys. Rev. Lett., 62:1134 (1989).CrossRefGoogle Scholar
  6. 6.
    M. B. Schneider, J. T. Jenkins, and W. W. Webb, J. Physique, 45:1457 (1984); I. Bivas, P. Hanusse, P. Bothorel, J. Lalanne and 0. Aguerre-Charriol, J. Phys. (Paris), 46:855 (1987).Google Scholar
  7. 7.
    P. G. de Gennes and C. Taupin, J. Phys. Chem., 86:2294 (1982); S. A. Safran, D. Roux, M. E. Cates, D. Andelman, Phys. Rev. Lett. 57:491 (1986).CrossRefGoogle Scholar
  8. 8.
    W. Helfrich, J. Phys. (Paris), 46:1263 (1985); L. Peliti and S. Leibler, Phys. Rev. Lett., 54:1960 (1985).CrossRefGoogle Scholar
  9. 9.
    A. Parsegian, N. Fuller, and R. P. Rand, Proc. Natl. Acad. Sei., 76:2750 (1979); R. P. Rand, Ann. Rev. Biophys. Bioeng., 10:277 (1981).CrossRefGoogle Scholar
  10. 10.
    J. N. Israelachvili, “Intermolecular and Surface Forces”, Academic Press, Orlando (1985); J. Mahanty and B. W. Ninham, “Dispersion Forces”, London (1976).Google Scholar
  11. 11.
    G. S. Smith, E. B. Sirota, C. R. Safinya, and N. A. Clark, Phys. Rev. Lett., 60:813 (1988); E. B. Sirota, G. S. Smith, C. R. Safinya, R. J. Piano, and N. A. Clark, Science, 242:1406 (1988).Google Scholar
  12. 12.
    W. Helfrich, Z. Naturforsch, 33a:305 (1978).Google Scholar
  13. 13.
    R. Lipowsky and S. Leibler, Phys. Rev. Lett. 56:2561 (1986); Y. Kantor, M. Kardar, and D. R. Nelson, Phys. Rev. Lett., 57:791 (1986); D. R. Nelson and L. Peliti, J. Phys. (Paris), 48:1085 (1987); J. A. Aronovitz and T.C. Lubensky, Phys. Rev. Lett., 60:2634 (1988); For a broader discussion see D. R. Nelson, “Statistical Mechanics of Membranes and Surfaces”, proceeding of the Jerusalem Winter School, edited by Nelson, Piran, and Weinberg (1987).CrossRefGoogle Scholar
  14. 14.
    P. G. DeGennes, “Scaling Concepts in Polymer Physics”, Cornell Univ. Press (1979).Google Scholar
  15. 15.
    See for example, J. Villain and P. Bak, J. de Physique (France), 42:657 (1981); S. G. J. Mochrie, A. R. Kortan, R. J. Birgeneau, P. M. Horn, Z. Phys. B., 62:79 (1985).CrossRefGoogle Scholar
  16. 16.
    L. D. Landau, in Collected Papers of L. S. Landua, edited by D. Ter. Haar, Gordon and Breach, New York (1965), p. 209; R. E. Peierls, Helv. Phys. Acta. 7, Suppl., 81 (1934).Google Scholar
  17. 17.
    A. Caillé, C. R. Acad. Sei. Ser., B274:891 (1972).Google Scholar
  18. 18.
    J. Als-Nielsen, J. D. Litster, R. J. Birgeneau, M. Kaplan, C. R. Safinya, A. Lindegaard-Andersen, and S. Mathiesen, Phys. Rev. B, 22:312 (1980).CrossRefGoogle Scholar
  19. 19.
    P. Pieranski, Contemp. Phys., 24:25 (1983); N. A. Clark et al., J. Phys. Colloq. C3, 43:137 (1985).Google Scholar
  20. 20.
    J. H. Schulman and J. B. Montagne, Ann. N.Y. Acad. Sci., 92:366 (1961).CrossRefGoogle Scholar
  21. 21.
    W. Helfrich, Z. Naturforsch, 28c:693 (1973); W. Helfrich and R. M. Servuss, IL Nuovo Cimento, 3D:137 (1984).CrossRefGoogle Scholar
  22. 22.
    P. G. DeGennes, “The Physics of Liquid Crystals”, Clarendon, Oxford (1974).Google Scholar
  23. 23.
    A. C. Cowley, N. L. Fuller, R. P. Rand, V. A. Parsegian, Biochem. 17:3163 (1978); S. Leibler, R. Lipowsky, Phys. Rev. B., 35:7004 (1984).CrossRefGoogle Scholar
  24. 24.
    V. Bonse and M. Hart, “Small Angle X-ray Scattering”, edited by H. Brumberger, NY, Gordon & Breach).Google Scholar
  25. 25.
    D. Roux and A. M. Bellocq, “Physics of Amphiphiles”, edited by V. DeGiorgio and M. Corti North-Holland, Amsterdam, (1985).Google Scholar
  26. 26.
    P. Ekwald, “Advances in Liquid Crystals”, Ed. G. H. Brown, Academic Press (1975).Google Scholar
  27. 27.
    G. S. Smith, C. R. Safinya, D. Roux, and N. A. Clark, Mol. Cryst. Liq. Cryst., 144:235 (1987).CrossRefGoogle Scholar
  28. 28.
    M. E. Cates, D. Roux, D. Andelman, S. T. Milner, and S. A. Safran, Europhysics Lett. 5:8:733 (1988); also for a more general discussion of structure and phase equilibria of surfactants in solution see D. Andelman, M. E. Cates, D. Roux and S. A. Safran, J. Chem. Phys., 87:12:7229 (1987).CrossRefGoogle Scholar
  29. 29.
    Elastic models lead to p=3 if the stress is uniformly distributed through the thickness of a bent sheet; E.G. L. D. Landau and E. M. Lifshitz, “Theory of Elasticity”, Pergamon, New York (1970); S. T. Milner and T. A. Witten, M. E. Cates, Europhysics, Lett. 5, 413 (1988); I. Szleifer, D. Kramer, A. Ben-Shaul, D. Roux, and W. M. Gelbart, Phys. Rev. Lett., 60:1966 (1988).CrossRefGoogle Scholar
  30. 30.
    For this SDS-alcohol series which consists of negatively charged membranes separated by water the electrostatic interactions are long range (Eq. (13)) and significantly larger than all other forces such as hydration (Eq. (12)), van der Waals (Eq. (11)), and undulations (Eq. (10)). Consequently, the power-law exponent η is dominated by electrostatic forces and gives a direct measurement of kc (Eq. (19)).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • C. R. Safinya
    • 1
  1. 1.Exxon Research and Engineering CompanyAnnandaleUSA

Personalised recommendations