Skip to main content

Rigid and Fluctuating Surfaces: A Series of Synchrotron X-ray Scattering Studies of Interacting Stacked Membranes

  • Chapter
Phase Transitions in Soft Condensed Matter

Part of the book series: NATO ASI Series ((NSSB,volume 211))

Abstract

In these lectures we discuss fluctuation phenomena encountered in interacting multilayered fluid membranes using synchrotron x-ray scattering as the primary tool. We consider very dilute Lα phases with inter-layer separations as large as ≈600 Å. While most Lα phases consist of flat membranes with large bending rigidity kc ≫ kBT, with their interlayer interactions determined by detailed microscopic interactions such as hydration and van der Waals, the stability of these phases is due to an effectively long-range interaction arising from the mutual hinderance of fluctuating membranes with a very small rigidity kc ≈ kBT. This regime, which because of its entropic origin exhibits universality, can be accessed from the microscopic regime by thinning and thus lowering the modulus kc of an initially rigid membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Dimeglio, M. Dvolaitsky, and C. Taupin, 89:871 (1985); J. M. Dimeglio, M. Dvolaitsky, L. Leger, and C. Taupin, Phys. Rev. Lett., 54:1686 (1985).

    Article  CAS  Google Scholar 

  2. C. R. Safinya, D. Roux, G. S. Smith, S. K. Sinha, P. Dimon, N. A. Clark, and A. M. Bellocq, Phys. Rev. Lett., 57:2718 (1986).

    Article  CAS  Google Scholar 

  3. D. Roux and C. R. Safinya, J. Phys. (Paris), 49:307 (1988).

    Article  Google Scholar 

  4. F. Larche, J. Appel, G. Porte, P. Bassereau, and J. Marignan, Phys. Rev. Lett., 56:1700 (1986); P. Bassereau, J. Marignan, G. Porte, J. Physique, 48:673 (1987).

    Article  CAS  Google Scholar 

  5. C. R. Safinya, E. Sirota, D. Roux, and G. S. Smith, Phys. Rev. Lett., 62:1134 (1989).

    Article  CAS  Google Scholar 

  6. M. B. Schneider, J. T. Jenkins, and W. W. Webb, J. Physique, 45:1457 (1984); I. Bivas, P. Hanusse, P. Bothorel, J. Lalanne and 0. Aguerre-Charriol, J. Phys. (Paris), 46:855 (1987).

    Google Scholar 

  7. P. G. de Gennes and C. Taupin, J. Phys. Chem., 86:2294 (1982); S. A. Safran, D. Roux, M. E. Cates, D. Andelman, Phys. Rev. Lett. 57:491 (1986).

    Article  CAS  Google Scholar 

  8. W. Helfrich, J. Phys. (Paris), 46:1263 (1985); L. Peliti and S. Leibler, Phys. Rev. Lett., 54:1960 (1985).

    Article  Google Scholar 

  9. A. Parsegian, N. Fuller, and R. P. Rand, Proc. Natl. Acad. Sei., 76:2750 (1979); R. P. Rand, Ann. Rev. Biophys. Bioeng., 10:277 (1981).

    Article  CAS  Google Scholar 

  10. J. N. Israelachvili, “Intermolecular and Surface Forces”, Academic Press, Orlando (1985); J. Mahanty and B. W. Ninham, “Dispersion Forces”, London (1976).

    Google Scholar 

  11. G. S. Smith, E. B. Sirota, C. R. Safinya, and N. A. Clark, Phys. Rev. Lett., 60:813 (1988); E. B. Sirota, G. S. Smith, C. R. Safinya, R. J. Piano, and N. A. Clark, Science, 242:1406 (1988).

    Google Scholar 

  12. W. Helfrich, Z. Naturforsch, 33a:305 (1978).

    Google Scholar 

  13. R. Lipowsky and S. Leibler, Phys. Rev. Lett. 56:2561 (1986); Y. Kantor, M. Kardar, and D. R. Nelson, Phys. Rev. Lett., 57:791 (1986); D. R. Nelson and L. Peliti, J. Phys. (Paris), 48:1085 (1987); J. A. Aronovitz and T.C. Lubensky, Phys. Rev. Lett., 60:2634 (1988); For a broader discussion see D. R. Nelson, “Statistical Mechanics of Membranes and Surfaces”, proceeding of the Jerusalem Winter School, edited by Nelson, Piran, and Weinberg (1987).

    Article  Google Scholar 

  14. P. G. DeGennes, “Scaling Concepts in Polymer Physics”, Cornell Univ. Press (1979).

    Google Scholar 

  15. See for example, J. Villain and P. Bak, J. de Physique (France), 42:657 (1981); S. G. J. Mochrie, A. R. Kortan, R. J. Birgeneau, P. M. Horn, Z. Phys. B., 62:79 (1985).

    Article  CAS  Google Scholar 

  16. L. D. Landau, in Collected Papers of L. S. Landua, edited by D. Ter. Haar, Gordon and Breach, New York (1965), p. 209; R. E. Peierls, Helv. Phys. Acta. 7, Suppl., 81 (1934).

    Google Scholar 

  17. A. Caillé, C. R. Acad. Sei. Ser., B274:891 (1972).

    Google Scholar 

  18. J. Als-Nielsen, J. D. Litster, R. J. Birgeneau, M. Kaplan, C. R. Safinya, A. Lindegaard-Andersen, and S. Mathiesen, Phys. Rev. B, 22:312 (1980).

    Article  CAS  Google Scholar 

  19. P. Pieranski, Contemp. Phys., 24:25 (1983); N. A. Clark et al., J. Phys. Colloq. C3, 43:137 (1985).

    Google Scholar 

  20. J. H. Schulman and J. B. Montagne, Ann. N.Y. Acad. Sci., 92:366 (1961).

    Article  CAS  Google Scholar 

  21. W. Helfrich, Z. Naturforsch, 28c:693 (1973); W. Helfrich and R. M. Servuss, IL Nuovo Cimento, 3D:137 (1984).

    Article  CAS  Google Scholar 

  22. P. G. DeGennes, “The Physics of Liquid Crystals”, Clarendon, Oxford (1974).

    Google Scholar 

  23. A. C. Cowley, N. L. Fuller, R. P. Rand, V. A. Parsegian, Biochem. 17:3163 (1978); S. Leibler, R. Lipowsky, Phys. Rev. B., 35:7004 (1984).

    Article  Google Scholar 

  24. V. Bonse and M. Hart, “Small Angle X-ray Scattering”, edited by H. Brumberger, NY, Gordon & Breach).

    Google Scholar 

  25. D. Roux and A. M. Bellocq, “Physics of Amphiphiles”, edited by V. DeGiorgio and M. Corti North-Holland, Amsterdam, (1985).

    Google Scholar 

  26. P. Ekwald, “Advances in Liquid Crystals”, Ed. G. H. Brown, Academic Press (1975).

    Google Scholar 

  27. G. S. Smith, C. R. Safinya, D. Roux, and N. A. Clark, Mol. Cryst. Liq. Cryst., 144:235 (1987).

    Article  CAS  Google Scholar 

  28. M. E. Cates, D. Roux, D. Andelman, S. T. Milner, and S. A. Safran, Europhysics Lett. 5:8:733 (1988); also for a more general discussion of structure and phase equilibria of surfactants in solution see D. Andelman, M. E. Cates, D. Roux and S. A. Safran, J. Chem. Phys., 87:12:7229 (1987).

    Article  Google Scholar 

  29. Elastic models lead to p=3 if the stress is uniformly distributed through the thickness of a bent sheet; E.G. L. D. Landau and E. M. Lifshitz, “Theory of Elasticity”, Pergamon, New York (1970); S. T. Milner and T. A. Witten, M. E. Cates, Europhysics, Lett. 5, 413 (1988); I. Szleifer, D. Kramer, A. Ben-Shaul, D. Roux, and W. M. Gelbart, Phys. Rev. Lett., 60:1966 (1988).

    Article  CAS  Google Scholar 

  30. For this SDS-alcohol series which consists of negatively charged membranes separated by water the electrostatic interactions are long range (Eq. (13)) and significantly larger than all other forces such as hydration (Eq. (12)), van der Waals (Eq. (11)), and undulations (Eq. (10)). Consequently, the power-law exponent η is dominated by electrostatic forces and gives a direct measurement of kc (Eq. (19)).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Safinya, C.R. (1989). Rigid and Fluctuating Surfaces: A Series of Synchrotron X-ray Scattering Studies of Interacting Stacked Membranes. In: Riste, T., Sherrington, D. (eds) Phase Transitions in Soft Condensed Matter. NATO ASI Series, vol 211. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0551-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0551-4_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7862-7

  • Online ISBN: 978-1-4613-0551-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics