Skip to main content

D1 Receptor Mediated Trophic Action of Dopamine on the Synthesis of GABA at the Terminals of Striatal Projections

  • Chapter
The Basal Ganglia IV

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 41))

Abstract

There is no doubt that degeneration of the dopaminergic innervation of the basal ganglia affects GABAergic activity in these structures. Among the parameters of GABAergic activity affected is the activity of the enzyme in charge of the synthesis of GABA, glutamic acid decarboxylase. Several approaches have been followed to test the effect of the degeneration on the activity of the enzyme. One approach has been to see whether the activity of the enzyme is affected by Parkinson’s disease (McGeer et al., 1971; Lloyd and Hornykiewicz, 1973; McGeer and McGeer, 1976; Javoy-Agid et al., 1981). There is consensus that Parkinson’s disease markedly reduces GAD activity in internal globus pallidus and substantia nigra (most probably in pars reticulata). However conflicting results have been found in the striatum. Here some authors (Lloyd and Hornykiewicz, 1973) have found a significant decrease in GAD activity, but others (McGeer and McGeer, 1976; Perry et al., 1983) have not found any effect of the disease on the activity of the enzyme. Another approach has been to see whether experimentally induced degeneration of the dopaminergic nigrostriatal system affects GAD activity. Without exception, it has been found that the degeneration of the dopaminergic nigrostriatal system (induced by 6-hydroxydopamine) increases GAD activity in the rat neostriatum (Vincent et al., 1978; Segovia and Garcia-Muñoz, 1987; Vernier et al, 1988; Segovia et al., 1989, 1990, 1991). Degeneration of the dopaminergic input to neostriatum not only increases GAD activity but GAD mRNA as well (Segovia et al., 1990). From this, these authors have proposed that dopaminergic neurons down regulate the gene expression for GAD in neostriatal GABAergic neurons. In other words, the dopaminergic innervation appears to exert a tonic inhibitory action on GAD activity mediated by a down regulation in the synthesis of GAD due to a decrease in GAD mRNA. This proposition is the opposite of that of Lloyd and Hornykiewicz, who based on the observation that levodopa partially recovered the GAD activity in the basal ganglia of parkinsonian brains (Lloyd and Hornykiewicz, 1973) proposed that “GAD-containing neurons could be under a continuous “trophic” influence of the dopaminergic system”, adding that “degeneration of the dopaminergic pathway might result in a biochemical “atrophy” of the GAD neurones”. How to reconcile these two propositions? The conflicting results may arise, in part, from the conditions in which GAD activity was measured, that is, in the presence of saturating concentrations of substrate (glutamic acid) and cofactor (pyridoxal phosphate). It appears that these conditions do not reflect the true functional GAD activity of the GABAergic neurons (Miller et al., 1978; Itoh and Uchimura, 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aceves, J., Floran, B., Martinez-Fong, D., Benitez, J., Sierra, A., and Flores, G., 1992, Activation of D1 receptors stimulates accumulation of γ-aminobutyric acid in slices of the pars reticulata of 6-hydroxydopamine-lesioned rats,Neurosci. Lett.145:40–42.

    Article  PubMed  CAS  Google Scholar 

  • Adams, C.F., Stromberg, I., Van Hörne, C., Hoffer, B.J., and Boyson, S.J., 1991, Effect of human fetal ventral mesencephalic xenografts on D1 and D2 receptor binding in the unilaterally 6-hydroxydopamine(6-OHDA)-lesioned rat striatum,Soc. Neurosci. Abst.307.3.

    Google Scholar 

  • Barone, P., Tucci, I., Parashos, S.A., and Chase, N., 1987, D-l dopamine receptors changes after striatal quinolinic acid lesion,Eur. J. Pharmacol.138:141–145.

    Article  PubMed  CAS  Google Scholar 

  • Bernasconi, R., Maitre, L., Martin, P., and Raschdorf, F., 1982, The use of inhibitors of GABAtransaminase for the determination of GABA turnover in mouse brain regions: an evaluation of aminooxyacetic acid and gabaculline.J. Neurochem38:57–66.

    Article  PubMed  CAS  Google Scholar 

  • Bolam, J.P., Powell, J.F., Wu, J.-Y., and Smith, A.D., 1985, Glutamate decarboxylase-immunoreactive structures in the rat neostriatum: a correlated light and electron microscopic study including a combination of Golgi impregnation with immunocytochemistry,J. Comp. Neurol.237:1–20.

    Article  PubMed  CAS  Google Scholar 

  • Erlander, M.G., Tillakaratne, N.J.K., Feldblum, S., Patel, N., Tobin, A.J., 1991, Two genes encoding distinct glutamate decarboxylases,Neuron7:91–100.

    Article  PubMed  CAS  Google Scholar 

  • Floran, B., Aceves, J., Sierra, A., and Martinez-Fong, D., 1990, Activation of D1 dopamine receptor stimulates the release of GABA in the basal ganglia of the rat,Neurosci. Lett.116:136–140.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen, Ch.R., Engber, T.M., Mahan, L.C., Susel, Z., Chase, T.N., and Monsma, F.J., 1990, D1and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons,Science250:1429–1432.

    Article  PubMed  CAS  Google Scholar 

  • Góngora, J.L., Sierra, A., Mariscal, S., and Aceves, J., 1988, Physostigmine stimulates phosphoinositide breakdown in the rat striatum,Eur. J. Pharmacol.155:49–55.

    Article  PubMed  Google Scholar 

  • Gonzales, C, Kaufman, D.L., Tobin, A.J., and Chesselet, M.-F., 1991, Distribution of glutamic aciddecarboxylase (Mr 67 000) in the basal ganglia of the rat: an immunohistochemical study with a selective cDNA-generated polyclonal antibody,J. Neurocytol.20:953–961.

    Article  PubMed  CAS  Google Scholar 

  • Itoh, M., 1983, Effect of haloperidol on glutamate decarboxylase activity in discrete brain regions,Psychopharmacology79:169–72.

    Article  PubMed  CAS  Google Scholar 

  • Itoh, M., and Uchimura, H., 1981, Regional differences in cofactor saturation of glutamate decarboxylase (GAD) in discrete brain nuclei of the rat,Neurochem. Res.6:1283–1289.

    Article  PubMed  CAS  Google Scholar 

  • Javoy-Agid, F., Ploska, A., Agid, Y., 1981, Microtopography of tyrosine hydroxylase, glutamic acid decarboxylase, and choline acetyltransferase in the substantia nigra and ventral tegmental area of control and parkinsonian patiens,J. Neurochem. 37:1218–1227.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman, D.L., Houser, C.R., and Tobin, A.J., 1991, Two forms of the γ-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions,J.Neurochem.56:720–723.

    Article  PubMed  CAS  Google Scholar 

  • Kita, H., and Kitai, ST., 1988, Glutamate decarboxylase immunoreactive neurons in rat neostriatum: their morphological types and populations,Brain Res. 447:346–352.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd, K.G., and Hornykiewicz, O., 1973, L-glutamic acid decarboxylase in Parkinson’s disease: effect of L-Dopa therapy,Nature243:521–523.

    Article  PubMed  CAS  Google Scholar 

  • McGeer, P.L., and McGeer, E.G., 1976, Enzymes associated with metabolism of catecholamines, acetylcholine and GABA in human controls and patients with Parkinson’s disease and Huntington’s chorea,J. Neurochem.26:65–76.

    PubMed  CAS  Google Scholar 

  • McGeer, P.L., McGeer, E.G., Wada, J.A., and Jung, E., 1971, Effects of globus pallidus lesions and Parkinson’s disease on brain glutamic acid decarboxylase,Brain Res. 32:425–431.

    Article  PubMed  CAS  Google Scholar 

  • Miller, L.P., Martin, D.L., Mazumder, A., and Walters, J.R., 1978, Studies on the regulation of GABA synthesis: substrate–promoted dissociation of pyridoxal-5’-phosphate from GAD,J. Neurochem.30:361–369.

    Article  PubMed  CAS  Google Scholar 

  • Miller, L.P., Walters, J.R., and Martin, D.L., 1977, Post-mortem changes implicate adenine nucleotides and pyridoxal-5’-phosphate in regulation of brain glutamate decarboxylase,Nature266:847–848.

    Article  PubMed  CAS  Google Scholar 

  • Missale, C, Nisoli, E., Liberini, P., Rizzonelly, P., Memo, M., Buonamici, M., Rossi, A., and Spano, P.F., 1989, Repeated reserpine administration up-regulates the transduction mechanisms of D1 receptors without changing the density of [3H]SCH23390 binding,Brain Res. 483:117–122.

    Article  PubMed  CAS  Google Scholar 

  • Perry, T.L., Javoy-Agid, F., Agid, Y., and Fibiger, H.C., 1983, Striatal GABAergic activity is not reduced in Parkinson’s disease,J. Neurochem.40:1120–1123.

    Article  PubMed  CAS  Google Scholar 

  • Savasta, M„ Dubois, A., Benavides, J., and Scatton, B., 1988, Different plasticity changes in Dl and D2 receptors in rat striatal subregions following impairement of dopaminergic transmission,Neurosci. Lett. 85:119–124.

    Google Scholar 

  • Segovia, J., and Garcia-Muñoz, M., 1987, Changes in the activity of GAD in the basal ganglia of the rat after striatal dopaminergic denervation,Neuropharmacology26: 1449 – 1451.

    Article  PubMed  CAS  Google Scholar 

  • Segovia, J., Armstrong, D.M., Benzing, W.C., and Hornby, P.J., 1991, Striatal glutamic acid immunoreactivity is increased after dopaminergic deafferentation: densitometric analysis,Neurosci. Lett.122:252–256.

    Article  PubMed  CAS  Google Scholar 

  • Segovia, J., Meloni, R., and Gale, K., 1989, Effect of dopaminergic denervation and transplant-derived reinnervation on a marker of striatal GABAergic function,Brain Res. 493:185–189.

    Article  PubMed  CAS  Google Scholar 

  • Segovia, J., Tillakaratne, N.J.K., Whelan, K., Tobin, A.J., and Gale, K., 1990, Parallel increases in striatal glutamic decarboxylase activity and GAD mRNA levels in rats with lesions of the nigrostriatal pathway,Brain Res. 529:345–348.

    Article  PubMed  CAS  Google Scholar 

  • Vernier, P., Julien, J-F., Rataboul, P., Fourrier, O., Feuerstein, and C, Mallet, J., 1988, Similar time course changes in striatal levels of glutamic acid decarboxylase and proenkephalin mRNA following dopaminergic deafferentation in the rat,J. Neurochem. 51:1375–1380.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, S.R., Nagy, J.I., and Fibiger, H.C., 1978, Increased striatal glutamate decarboxylase after lesions of the nigrostriatal pathway,Brain Res. 143:168–173.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Plenum Press, New York

About this chapter

Cite this chapter

Aceves, J., Floran, B., Garcia, M. (1994). D1 Receptor Mediated Trophic Action of Dopamine on the Synthesis of GABA at the Terminals of Striatal Projections. In: Percheron, G., McKenzie, J.S., Féger, J. (eds) The Basal Ganglia IV. Advances in Behavioral Biology, vol 41. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0485-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0485-2_44

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7591-6

  • Online ISBN: 978-1-4613-0485-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics