Skip to main content
Log in

Distribution of glutamic acid decarboxylase (Mr 67 000) in the basal ganglia of the rat: an immunohistochemical study with a selective cDNA-generated polyclonal antibody

  • Published:
Journal of Neurocytology

Summary

Distinct isoforms of glutamic acid decarboxylase, the synthetic enzyme for GABA, exist in brain. Their distribution at the cellular level is not known, because previous studies have been confounded by the lack of monospecificity of available antibodies. We have examined the distribution of glutamic acid decarboxylase (Mr 67 000; GAD67) in the basal ganglia of the rat with a polyclonal antibody generated against the protein expressed in bacteria transformed with the corresponding cDNA. This antibody, which is directed against a portion of GAD67 non homologous to other known glutamic acid decarboxylase isoforms, selectively recognizes GAD67 on western blots. We show that GAD67 is present to various degree in all types of GABAergic neurons previously described in these regions. In contrast with results obtained with non-selective antibodies for glutamic acid decarboxylase, GAD67-positive neuronal cell bodies were readily detected in sections of the striatum, pallidum and substantia nigra in the absence of colchicine treatment. Modifications in the immunohistochemical procedure favoured staining of glutamic acid decarboxylase-positive fibres with the same antibody, indicating that GAD67 is also present in axon terminals of GABAergic neurons. The results suggest that GAD67 may be involved in GABA synthesis in both cell bodies and axon terminals of all GABAergic neurons of the basal ganglia, but is particularly abundant or accessible in their cell bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, G. E. &Crutcher, M. D. (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing.Trends in Neurosciences 13, 266–71.

    PubMed  Google Scholar 

  • Arluison, M., Conrath-Verrier, M., Tauc, M., Mailly, P., De La Manche, S., Cesselin, F., Bourgoin, S. &Hamon, M. (1983) Different localizations of metenkephalin-like immunoreactivity in rat forebrain and spinal cord using hydrogen peroxide and Triton X-100. Ultrastructural study.Brain Research Bulletin 11, 573–85.

    PubMed  Google Scholar 

  • Balcom, G., Lenox, R. &Meyerhoff, J. (1975) Regional gamma-aminobutyric acid levels in rat brain determined after microwave fixation.Journal of Neurochemistry 24, 609–13.

    PubMed  Google Scholar 

  • Bolam, J. P., Clarke, D. J., Smith, A. D. &Somogyi, P. (1983) A type of aspiny neuron in the rat striatum accumulates3H-gamma aminobutyric acid: combination of Golgi-staining, autoradiography, and electron microscopy.Journal of Comparative Neurology 213, 121–34.

    PubMed  Google Scholar 

  • Bolam, J. P., Powell, J. F., Wu, J. Y. &Smith, A. D. (1985) Glutamate decarboxylase-immunoreactive neurons in the rat neostriatum: a correlated light and electronmicroscopic study including a combination of Golgi impregnation with immunohistochemistry.Journal of Comparative Neurology 237, 1–20.

    PubMed  Google Scholar 

  • Celio, M. R. &Heizmann, C. W. (1981) Calcium-binding protein parvalbumin as a neuronal marker.Nature 293, 300–2.

    PubMed  Google Scholar 

  • Chang, Y. -C. &Gottlieb, D. I. (1988) Characterization of the proteins purified with monoclonal antibodies to glutamic acid decarboxylase.Journal of Neuroscience 8, 2123–30.

    PubMed  Google Scholar 

  • Chesselet, M. -F. &Robbins, E. (1989) Characterization of striatal neurons expressing high levels of glutamic acid decarboxylase messenger RNA.Brain Research 492, 237–44.

    PubMed  Google Scholar 

  • Chesselet, M. -F., Weiss, L., Wuenschell, C., Tobin, A. J. &Affolter, H. -U. (1987) Comparative distribution of mRNAs for glutamic acid decarboxylase, tyrosine hydroxylase, and tachykinins in the basal ganglia: anin situ hybridization study in the rodent brain.Journal of Comparative Neurology 262, 125–40.

    PubMed  Google Scholar 

  • Cowan, R. L., Wilson, C. W. &Emson, P. C. (1987) Parvalbumin is present in GABA-containing interneurons of the rat neostriatum.Society for Neuroscience Abstracts 13, 1573.

    Google Scholar 

  • Denner, L. A. &Wu, J. -Y. (1985) Two forms of rat brain glutamic acid decarboxylase differ in their dependence on free pyridoxal phosphate.Journal of Neurochemistry 44, 957–65.

    PubMed  Google Scholar 

  • Difiglia, M., Pasik, P. &Pasik, T. (1976) A Golgi study of neuronal types in the neostriatum of monkeys.Brain Research 114, 245–56.

    PubMed  Google Scholar 

  • Erlander, M. G. &Tobin, A. J. (1991) The structural and functional heterogeneities of glutamate decarboxylase; a review.Neurochemical Research, in press.

  • Erlander, M. G., Tillakaratne, N. K. J., Feldblum, S., Patel, N. &Tobin, A. J. (1991) Two genes encode distinct glutamate decarboxylases.Neuron,7, 91–100.

    PubMed  Google Scholar 

  • Feldblum, S., Ackermann, R. F. &Tobin, A. J. (1990) Long-term increase of glutamate decarboxylase mRNA in a rat model of temporal lobe epilepsy.Neuron 5, 361–71.

    PubMed  Google Scholar 

  • Graybiel, A. M. &Chesselet, M. -F. (1984) Compartmental distribution of striatal cell bodies expressing [Met]enkephalin-like immunoreactivity.Proceedings of the National Academy of Sciences (USA) 81, 7980–4.

    Google Scholar 

  • Gulley, R. L. &Wood, R. L. (1971) The fine structure of the neurons in the rat substantia nigra.Tissue and Cell 3, 675–90.

    Google Scholar 

  • Holstein, G. R., Pasik, P. &Pasik, T. (1986) Synapses between GABA-immunoreactive axonal and dendritic elements in monkey substantia nigra.Neuroscience Letters 66, 316–22.

    PubMed  Google Scholar 

  • Houser, C. R., Miyashiro, J. E., Kaufman, D. L. &Tobin, A. J. (1989) Immunocytochemical studies using a new antiserum against bacterially produced feline glutamate decarboxylase.Society for Neuroscience Abstracts 15, 488.

    Google Scholar 

  • Huang, W. -M., Reed-Fourquet, L., Wu, E. &Wu, J. -Y. (1990) Molecular cloning and amino acid sequence of brainl-glutamate decarboxylase.Proceedings of the National Academy of Sciences (USA) 87, 8491–5.

    Google Scholar 

  • Julien, J. -F., Legay, F., Dumas, S., Tappaz, M. &Mallet, J. (1987) Molecular cloning, expression andin situ hybridization of rat brain glutamic acid decarboxylase messenger RNA.Neuroscience Letters 73, 173–80.

    PubMed  Google Scholar 

  • Katarova, Z., Szabo, G., Mugnaini, E. &Greenspan, R. J. (1990) Molecular identification of the 62 kd form of glutamic acid decarboxylase from the mouse.European Journal of Neuroscience 2, 190–202.

    PubMed  Google Scholar 

  • Kaufman, D. L., Houser, C. R. &Tobin, A. J. (1991) Two forms of the GABA synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions.Journal of Neurochemistry 56, 720–3.

    PubMed  Google Scholar 

  • Kita, H. &Kitai, S. T. (1988) Glutamate decarboxylase immunoreactive neurons in rat neostriatum: their morphological types and populations.Brain Research 447, 346–52.

    PubMed  Google Scholar 

  • Kita, H., Kosaka, T. &Heizmann, C. W. (1990) Parvalbumin-immunoreactive neurons in the rat neostriatum: a light and electron microscopic study.Brain Research 536, 1–15.

    PubMed  Google Scholar 

  • Kobayashi, Y., Kaufman, D. L. &Tobin, A. J. (1987) Glutamic acid decarboxylase cDNA: nucleotide sequence encoding an enzymatically active fusion protein.Journal of Neuroscience 7, 2768–72.

    PubMed  Google Scholar 

  • Kubota, Y., Inagaki, S., Shimada, S., Kito, S. &Wu, J. -Y. (1987) Glutamate decarboxylase-like immunoreactive neurons in the rat caudate putamen.Brain Research Bulletin 18, 687–97.

    PubMed  Google Scholar 

  • Legay, F., Henry, S. &Tappaz, M. (1987) Evidence for two distinct forms of native glutamic acid decarboxylase in rat brain soluble extract: an immunoblotting study.Journal of Neurochemistry 48, 1022–6.

    PubMed  Google Scholar 

  • Lindefors, N., Brene, S., Herrera-Marschitz, M. &Persson, H. (1989) Region specific regulation of glutamic acid decarboxylase mRNA expression by dopamine neurons in rat brain.Experimental Brain Research 77, 611–20.

    Google Scholar 

  • Litwak, J., Mercugliano, M., Chesselet, M. -F. &Oltmans, G. A. (1990) Increased glutamic acid decarboxylase (GAD) mRNA and GAD activity in cerebellar Purkinje cells following lesion-induced increases in cell firing.Neuroscience Letters 116, 179–83.

    PubMed  Google Scholar 

  • Martin, D. L., Wu, S. J. &Martin, S. B. (1990) Active site labeling of brain glutamic acid decarboxylase.Journal of Neurochemistry 55, 524–32.

    PubMed  Google Scholar 

  • Mcgeer, P. L. &Mcgeer, E. G. (1975) Evidence for glutamic acid decarboxylase-containing interneurons in the neostriatum.Brain Research 74, 331–5.

    Google Scholar 

  • Mugnaini, E. &Oertel, W. H. (1985) An atlas of the distribution of GABAergic neurons and terminals in the CNS as revealed by GAD immunohistochemistry. InHandbook of Neuroanatomy, Vol. 4, Part 1 (edited byBjörklund, A. &Hokfelt, T.), pp. 436–608. Amsterdam: Elsevier.

    Google Scholar 

  • Nitsch, C. (1980) Regulation of GABA metabolism in discrete rabbit brain regions under methoxypiridoxine. Regional differences in cofactor saturation and the preictal activation of glutamate decarboxylase activity.Journal of Neurochemistry 34, 822–30.

    PubMed  Google Scholar 

  • Nitsch, C. &Riesenberg, R. (1988) Immunocytochemical demonstration of GABAergic synaptic connections in rat substantia nigra after different lesions of the striatonigral projection.Brain Research 461, 127–42.

    PubMed  Google Scholar 

  • Oertel, W. H., Tappaz, M. L., Berod, A. &Mugnaini, E. (1982) Two-color immunohistochemistry for dopamine and GABA neurons in rat substantia nigra and zona incerta.Brain Research Bulletin 9, 463–74.

    PubMed  Google Scholar 

  • Oertel, W. H., Nitsch, C. &Mugnaini, E. (1984) Immunocytochemical demonstration of the GABA-ergic neurons in rat globus pallidus and nucleus entopeduncularis and their GABA-ergic innervation.Advances in Neurology 40, 91–8.

    PubMed  Google Scholar 

  • Pasik, P., Pasik, T., Holstein, G. &Hamori, J. (1988) GABAergic elements in the neuronal circuits of the monkey neostriatum: a light and electronmicroscopic immunocytochemical study.Journal of Comparative Neurology 270, 157–70.

    PubMed  Google Scholar 

  • Penny, G. R., Afsharpour, S. &Kitai, S. (1986) The glutamate decarboxylase-leucine enkephalin-, methionine enkephalin- and substance P-immunoreactive neurons in the neostriatum of the rat and cat: evidence for partial population overlap.Neuroscience 17, 1011–45.

    PubMed  Google Scholar 

  • Ferez De La Mora, M., Possani, L. D., Tapia, R., Teran, L., Palacios, R., Fuxe, K., Hokfelt, T. &Ljungdahl, A. (1981) Demonstration of central gamma-aminobutyrate-containing nerve terminals by means of antibodies against glutamate decarboxylase.Neuroscience 6, 875–95.

    PubMed  Google Scholar 

  • Ribak, C. E. (1981) The GABA-ergic neurons of the extrapyramidal system as revealed by immunohistochemistry.Advances in Biochemistry and Psychopharmacology 30, 23–36.

    Google Scholar 

  • Ribak, C. E., Vaughn, J. E. &Saito, K. (1978) Immunocytochemical localization of glutamic acid decarboxylase in neuronal somata following colchicin inhibition of axonal transport.Brain Research 140, 315–32.

    PubMed  Google Scholar 

  • Ribak, C. E., Vaughn, J. E. &Roberts, E. (1980) GABA-ergic nerve terminals decrease in the substantia nigra following hemitransections of the striatonigral-pallidonigral pathways.Brain Research 192, 413–20.

    PubMed  Google Scholar 

  • Saito, K., Barber, R., Wu, J. -Y., Matsuda, T., Roberts, E. &Vaughn, J. (1974) Immunohistochemical localization of glutamate decarboxylase in rat cerebellum.Proceedings of the National Academy of Sciences (USA) 71, 269–73.

    Google Scholar 

  • Segovia, J., Tillakaratne, N. J. K. T., Whelan, K., Tobin, A. J. &Gale, K. (1990) Parallel increases in striatal glutamic acid decarboxylase activity and mRNA levels in rats with lesions of the nigrostriatal pathway.Brain Research 529, 345–8.

    PubMed  Google Scholar 

  • Smith, Y. &Bolam, J. P. (1989) Neurons of the substantia nigra reticulata receive a dense GABA-containing input from the globus pallidus in the rat.Brain Research 493, 160–7.

    PubMed  Google Scholar 

  • Smith, Y. &Parent, A. (1988) Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity.Brain Research 453, 353–6.

    PubMed  Google Scholar 

  • Smith, Y., Parent, A., Seguela, P. &Descarries, L. (1987) Distribution of GABA-immunoreactive neurons in the basal ganglia of the squirrel monkey (Saimiri sciureus).Journal of Comparative Neurology 259, 50–65.

    PubMed  Google Scholar 

  • Smith, Y., Bolam, J. P. &Von Krosick, M. (1990) Anatomical and chemical organization of the pallidosubthalamic projection in the rat.European Journal of Neuroscience 2, 500–11.

    PubMed  Google Scholar 

  • Soghomonian, J. -J. &Chesselet, M. -F. (1989) 6-hydroxydopamine-induced changes in levels of striatal mRNAs encoding somatostatin and glutamic acid decarboxylase as detected byin situ hybridization histochemistry.Society for Neuroscience Abstracts 15, 911.

    Google Scholar 

  • Spink, D. C., Porter, T. G., Wu, S. J. &Martin, D. L. (1987) Kinetically different multiple forms of glutamate decarboxylase in rat brain.Brain Research 421, 235–44.

    PubMed  Google Scholar 

  • Vernier, P., Julien, J. -F., Rabatoul, P., Fourrier, O., Feuerstein, C., &Mallet, J. (1988) Similar time course of changes in striatal levels of glutamic acid decarboxylase and proenkephalin mRNA following dopaminergic deafferentation in the rat.Journal of Neurochemistry 51, 1375–80.

    PubMed  Google Scholar 

  • Wu, J. -Y., Denner, L. A., Wei, S. C., Lin, C. -T., Song, G. -X., Xu, Y. F., Liu, J. W. &Lin, H. S. (1986) Production and characterization of polyclonal and monoclonal antibodies to rat brain L-glutamate decarboxylase.Brain Research 373, 1–14.

    PubMed  Google Scholar 

  • Wuenschell, C., Fisher, R. S., Kaufman, D. L. &Tobin, A. J. (1986)In situ hybridization to localize mRNA encoding the neurotransmitter synthetic enzyme glutamic acid decarboxylase (GAD) in the mouse cerebellum.Proceedings of the National Academy of Sciences (USA) 83, 6193–97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzales, C., Kaufman, D.L., Tobin, A.J. et al. Distribution of glutamic acid decarboxylase (Mr 67 000) in the basal ganglia of the rat: an immunohistochemical study with a selective cDNA-generated polyclonal antibody. J Neurocytol 20, 953–961 (1991). https://doi.org/10.1007/BF01187913

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01187913

Keywords

Navigation