Skip to main content

Studies of the Phytotoxicity of Saponins on Weed and Crop Plants

  • Chapter
Saponins Used in Food and Agriculture

Abstract

Several saponins or sapogenins including β-escin, betulin, β-glycyrrhetinic acid, hecogenin, oleandrin, and oleanolic acid were tested in the laboratory, growth chamber, and greenhouse on various weed and crop species. Seed germination, root and shoot growth after root, foliar, or soil application, electrolyte leakage from leaf discs, and greening of etiolated plant tissues were monitored. Esterase activity using fluorescein diacetate (FDA) and p-nitrophenyl butyrate (PNPB) was also assayed. The compounds had differential effects on these parameters, depending on the species. The effects of these compounds on electrolyte leakage ranged from no effect to a 10-fold increase above untreated tissue levels after 72 h. Escin increased FDA activity up to 35% above untreated tissue, but other compounds caused no effect or reduced FDA activity. PNPB activity was generally not affected. In greening studies of excised tissue, escin reduced chlorophyll production by 90–100% in several species, with other compounds giving intermediate or no effects. Foliar application (1.0 mM) in the greenhouse had no substantial effect (visible or shoot biomass) on 10 species. However, in short-term (8 to 13 day) tests, β-escin, applied to soil at 88 and 350 μmol/kg soil, drastically reduced emergence in barnyardgrass (Echinochloa crus-galli L. Beauv.), hemp sesbania [Sesbania exaltata (Raf.) Rydb. ex A.W. Hill], wheat (Triticum aestivum L.), and soybean [Glycine max (L.) Merr.]. β-Escin also reduced growth in all species but soybean, and barnyardgrass was the most sensitive species tested. Results are discussed in relation to the role of these compounds as plant growth-regulating natural products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araeson, P.A. and R.D. Duibin. Sensitivity of fungi to alpha—tomatine. Phytopathology 58:536 (1968).

    Google Scholar 

  2. Assa, Y., S. Shang, B. Gestebner, Y. Tencer, Y. Birk, and A. Bondi. Interaction of alfalfa saponin with components of the erythrocyte membrane in hemolysis. Biochinu Biophys. Acta 307:83 (1973).

    Article  CAS  Google Scholar 

  3. Ringhamj A.D. and R.W. Horne. Action of saponin on biological cell membranes. Nature 196:952 (1962).

    Article  Google Scholar 

  4. Barnes, J.D., L. Balaguer, E. Manriques, S. Elvira, and A.W. Davison. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls-A and chlorophylls-B in lichens and higher plante. Environ. Exptl Bot. 32:85 (1992).

    Article  CAS  Google Scholar 

  5. Basu, N. and R.P. Rastogi. Triterpenoid saponins and sapogenins. Phytochemistry 6:1249 (1967).

    Article  Google Scholar 

  6. Bhowmik, P.C. and J.D. Doll. Corn and soybean response to allelopathic effects of weed and crop residues. Agron. J. 74:601 (1982).

    Article  Google Scholar 

  7. Bowyer, P, B.R. Clark, P. Lunness, M.J. Daniels, and A.E. Osbourn. Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme. Science 761:311 (1995).

    Google Scholar 

  8. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein lrftltying the principle of protein—dye binding. AnaL Biochem. 72:248 (1976).

    Article  PubMed  CAS  Google Scholar 

  9. Bradow, J.M. “Germination Regulation by Amaranthus palneri and Ambrosia artemisiifolia”, pp. 285–300 in The Chemistry of Allelopathy. Biochemical Interactions Among Plants. ACS Symp. Ser. 268. A.C. Thompson (Ed.) Am. Chem. Soc. Washington, DC (1985).

    Chapter  Google Scholar 

  10. Budavari, S. (Ed.) “Escin” #3644, p. 58, in The Merck Index, 11th Edition. Merck and Co., Inc. Rahway, NJ (1989).

    Google Scholar 

  11. Camm, E.L. and G.H.N. Towers. Phenylalanine ammonia—lyase. Phytochemistry 12:961 (1973).

    Article  CAS  Google Scholar 

  12. Christian, D.A. and L.A. Hadwiger. Pea saponins in the pea—Fusarium solani interaction. ExptL Mycology 13:419 (1989).

    Article  CAS  Google Scholar 

  13. Défago, G. and H. Kern. Induction of Fusarium solani mutants insensitive to tomatine; their pathogenicity and aggressiveness to tomato fruits and pea plants. Physiol Plant Pathol. 22:29 (1983).

    Google Scholar 

  14. Duke, S.O. “Plant Terpenoids as Pesticides” pp. 269–295 in Handhook of Natural Toxins, Vol. 6, Toxicology of Plant and Fungal Compounds. R.F. Keeler and A.T.Tu (Eds.) Marcel Dekker, Inc., New York (1991).

    Google Scholar 

  15. Duke, S.O. and W.H. Kenyon. “Peroxidizing Activity Determined by Cellular Leakage”, pp. 61–66 in Target Assays for Modern Herbicides and Related Phytotoxic Compounds. P. Böger and G. Sandmann (Eds.) Lewis Publishers, Boca Raton, FL (1993).

    Google Scholar 

  16. Fischer, N.H. and L. Ouijano. “Allelopathic Agents from Common Weeds: Amaranthus pabneri, Ambrosia artemisiifolia, and Related Weeds”, pp. 133–148 in The Chemistry of Allopathy Biochemical Interactions Among Plants. ACS Symp. Ser. 268. A.C. Thompson (Ed.) Am. Chem. Soc. Washington, DC (1985).

    Article  CAS  Google Scholar 

  17. Fischer, N.H. “Plant Terpenoids as Allelopathic Agents”, pp. 377–398 in Ecological Chemistry and Biochemistry of Plant Terpenoids. J.B. Harborne and F.A. Tomas-Barberan (Eds.) Clarendon Press, New York (1991).

    Google Scholar 

  18. Glauret, A.M., J.T. Dingle, and J. A. Lucy. Action of saponin on biological cell membranes. Nature 196:953 (1962).

    Article  Google Scholar 

  19. Gommori, K., F. Miyamoto, Y. Sbibata, T. Higashi, S. Sanada, and J. Shoji. Effects of ginseng saponins on cholesterol metabolism. 2. Effects of ginsenosides on cholesterol synthesis by liver slices. Chem. Pharm. Bull Jpn. 24:2985 (1976).

    CAS  Google Scholar 

  20. Guilbault, G.G. and D.N. Kramer. Fluorometric determination of lipase, acylase, alpha- and garnma-chyrnotrypsin and inhibitors of these enzymes. AnaL Chem. 36:409 (1964).

    Article  Google Scholar 

  21. Harborne, J.B. and H. Baxter (Eds.) “Triterpenoid Saponins”, pp. 670–688 in Phytochemical Dictionary, A Handbook of Bioactive Compounds from Plants. Taylor and Francis Press, London (1993).

    Google Scholar 

  22. Henry, M., A. Rahier, and M. Taton. Effect of gypsogenin 3,0-glucuronide pretreatment of Gypsophila paniculata and Saponaria officinalis cell suspension cultures on the activities of microsomal 2,3-oxidosqualene cycloartenol and amyrin cyclases. Phytochemistry 31:3855 (1992).

    Article  CAS  Google Scholar 

  23. Hiscox, J.D. and G.F. Israelstam. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 57:1332 (1979).

    Article  CAS  Google Scholar 

  24. Hostettmann, K. and A. Marston. “Triterpene Saponins — Pharmacological and Biological Properties”, pp. 232–286 in Saponina. Cambridge university Press, New York (1995).

    Google Scholar 

  25. Jurzysta, M. Effect of saponins isolated from seeds of hicerene on germination and growth of cereal seedlings. Zesz. Nauk U.M.K. Torum, Ser. Biol. 13:253 (Polish) (1970).

    Google Scholar 

  26. Jurzysta, M. Chemical characteristics of saponins from Medicago lupulina seeds. Proc. 11th Polish Biochem. Soc., p. 18. Bialystok, Poland (1973).

    Google Scholar 

  27. Kesselmeir, J. and H.G. Ruppel. Relations between saponin concentration and prolamellar body structures in etioplasts of Avena sativa during greening and re-etiolating and in etioplaste of Hordeum vulgare and Pisum sativum. Z Pflanzenphysiol., Bd. 93:171 (1979).

    Google Scholar 

  28. Kudou, S., M. Tonomura, C. Tsukamoto, M. Shimoyamada, M. Uchida, and K. Okubo. Isolation and structural elucidation of the major genuine soybean saponin. Biosci BiotechnoL Biochem. 56:142 (1992).

    Article  CAS  Google Scholar 

  29. Leshem, Y. and J. Levin. The effect of growing alfalfa on subsequent cotton plant development and on nitrate formation in peat soil. Plant Soil 50:323 (1978).

    Article  CAS  Google Scholar 

  30. Luning, H.U., B.G. Waiyaki, and E. Schlösser. Role of saponins in antifungal resistance. 8. Interactions of Avena sativa — Fusarium avenaccum. PhytopaihoL Z. 92:338 (1978).

    Article  Google Scholar 

  31. Lütz, C. and S. Klein. Biochemical and cytologies! observations on chloroplast development. VI. Chlorophylls and saponins in prolamellar bodies and prothy lakoids separated from etioplasts of etiolated Avena sativum L. leaves. Z. PflanzenphysioL Bd. 95:227 (1979).

    Google Scholar 

  32. Mahato, S.B., A.M. Ganguly, and N.P. Sahu. Steroid saponins. Phytochemistry 21:959 (1982).

    Article  CAS  Google Scholar 

  33. Marston, A., F. Gamer, S.F. Dossaji, and K. Hostettmann. Fungicidal and molhiscicidal saponins from Dolichos kilimandscharicus. Phytochemistry 27:1325 (1988).

    Article  Google Scholar 

  34. Medzon, E.L. and M.L. Brady. Direct measurement of acetyfesterase in living protist cells. J. Bacteriol, 97:402 (1969).

    Article  CAS  Google Scholar 

  35. Mishustin, B.N. and A.N. Naumova. Secretion of toxic substances by alfalfa and their effect on cotton and soil microflora. Akad. Nauk USSR Izvestiya, Ser. Biol. 6:3 (Russian) (1955).

    Google Scholar 

  36. Nishida, K., Y. Ohta, Y. Araki, M. Ito, Y. Nagamura, and I. Ishiguro. Inhibitory effects of “Group A Saponin” and “Group B Saponin” fractions from soybean seed hypocotyls on radical—initiated lipid peroxidation in mouse liver microsomes. J. Clin, Biochem. Nutr. 15:175 (1993).

    Article  CAS  Google Scholar 

  37. Nisius, A. The stromacentre in Avena plast ids: an aggregation of β-glucosidase responsible for the activation of oat—leaf saponins. Planta 173:474 (1988).

    Article  CAS  Google Scholar 

  38. Nord, E.C. and G.R. Van Atta. Saponin — a seed germination inhibitor. Forest Sei. 6:350 (1960).

    CAS  Google Scholar 

  39. Ohminami, K., H. Okuda, T. Hami, I. Kitagawa, M. Yoshikawa, S. Arichi, and T. Hayashi. Effect of soyasaponins on liver injury. J. Jpn. Soc. Nutr. Food Sci. 34:105 (1981).

    Google Scholar 

  40. Okhani, K., S. Mavi, and K. Hostettmann. Mulluscicidal and antifungal triterpenoid saponins from Rapanea melanophloeos leaves. Phytochemistry 33:83 (1993).

    Article  Google Scholar 

  41. Oleszek, W. Allelopathic potentials of alfalfa (Medicago sativa) saponins: Their relation to antifungal and hemolytic activities J. Chem. Ecol. 19:1063 (1993).

    Article  CAS  Google Scholar 

  42. Oleszek, W. and M. Jurzysta. The allelopathic potential of alfalfa root medicagenic acid glycosides and their fate in soil environments. Plant Soil 98:67 (1987).

    Article  CAS  Google Scholar 

  43. Osbourn, A.E., B.R. Clarke, J. Dow, and M. Daniels. Partial characterization of avenacinase from Gaeumannomyces graminis var. avenae. PhysioL MoL Plant Pathol. 38:301 (1991).

    Article  CAS  Google Scholar 

  44. Pedersen, M.W. Effect of alfalfa saponin on cottonseed germination. Agron. J. 57:516 (1965).

    Article  CAS  Google Scholar 

  45. Pedersen, M.W., B. Berrang, M.E. Wall, and K.H. Davis, Jr. Modification of saponin characteristics of alfalfa by selection. Crop Sci. 13:731 (1973).

    Article  CAS  Google Scholar 

  46. Pegg, G.F. and G.F. Woodward. Synthesis and metabolism of α-tomatine in tomato isolines in relation to resistance to VerticilUum albo—atrum. PhysioL Mol Plant Pathol. 28:187 (1986).

    Article  CAS  Google Scholar 

  47. Rademacher, W. “Gibberellins: Metabolic Pathways and Inhibitors of Biosynthesis”, pp. 127–145 in Target Sites of Herhicida Action. P. Boger and G. Sandmann (Eds.) CRC Press, Boca Raton, FL, (1989).

    Google Scholar 

  48. Rice, EX. Allelopathy — An Update. Bot. Rev. 45:15 (1979).

    Article  CAS  Google Scholar 

  49. Rice, E.L. “Allelopathic Effects of Weeds on Crop Plants” pp. 38–77 in Biological Control of Weeds and Plant Diseases. Univ. of Oklahoma Press, Norman (1995).

    Google Scholar 

  50. Roy, S., A.K. Dutta, and D.P. Chakraborty. Amasterol, an ecdysone precursor and a growth inhibitor from Amaranthus viridis. Phytochemistry 21:2417 (1982).

    Article  CAS  Google Scholar 

  51. Sakakibara, K., Y. Shibata, T. Higashi, S. Sanada, and J. Shoji. Effect of ginseng saponins on cholesterol metabolism. 1. Level and synthesis of serum and liver cholesterol in rats treated with ginsenosides. Chem. Pharm. Bull Jpn. 23:1009 (1975).

    CAS  Google Scholar 

  52. Schönbeck, F. and E. Schlösser. “Preformed Substances as Potential Protectants”, pp. 653–678 in EncyL Plant Physiol. New Ser. R. Hekefuss and P.H. Williams (Eds.), Springer-Verlag, Berlin (1976).

    Google Scholar 

  53. Sharma, S.K. and J. Kalra. Ginsenosides are potent and selective inhibitors of some calmodulin-dependent phosphodiesterase isozymes. Biochemistry 32:4975 (1993).

    Article  PubMed  CAS  Google Scholar 

  54. Singh, S.B. and R. S. Thakur. Recent advances in the chemistry of steroidal saponins and their genins. J. Sei. Ind. Res. 42:319 (1983).

    CAS  Google Scholar 

  55. Tarikov, G., A.E. Timbekova, N.K. Abubakirov, and R.K. Koblov. Growth regulating activiy of triterpene glycosides isolated from alfalfa (Medicago sativa L.). Uzbeksk. Biol Zhur. 6:24 (1988).

    Google Scholar 

  56. Teasdale, J.R., C.E. Beste, and W.E. Potts. Response of weeds to tillage and crop cover residues. Weed Sci. 39:195(1991).

    Google Scholar 

  57. Tschesche, R. “Advances in the Chemistry of Antibiotic Substances from Higher Plants”, pp. 274–289 in Pharmacognosy and Phytochemistry, H. Wagner and L. Horhammer (Eds.) Springer-Verlag, Berlin (1971).

    Google Scholar 

  58. Tsurumi, S. and Y. Tsujino. Chromosaponin I stimulates the growth of lettuce roots. Physiol Plant. 93:785 (1995).

    Article  CAS  Google Scholar 

  59. Tsunimi, S., T. Takagi, and T. Hashimoto. A γ-pyronyl—triterpenoid saponin from Pisum sativum. Phytochemistry 31:2435 (1992).

    Article  Google Scholar 

  60. Varshney, LP. and M.O. Farooq. Etude l’influence d’une nouvelle saponine d’AIbizzia lebbek, Benth. sur la germination et la croissance des graines de pois chicke (Cicer arietinum L.) et d’orge (Hordeum vulgare L.) Bull Soc. Chem. Biol. 35:827 (1953).

    CAS  Google Scholar 

  61. Wagner, S.C., R.M. Zabktfowicz, M.A. Locke, R.J. Smeda, and CT. Bryson. Influence of herbicide—desiccated cover crops on biological soil quality in the Mississippi Delta. Proc. 1995 Southern Conservation Tillage Conference for Sustainable Agriculture. MAFES Special Bulletin 88–7. Missississippi State University (1995).

    Google Scholar 

  62. Waiyaki, B.G. and E. Schlosser. Role of saponins in antifungal resistance. 9. Species—specific inactivation of avenecin by Fusarium avenaceum. PhytopaihoL Z. 92:346 (1978).

    Article  CAS  Google Scholar 

  63. Waller, G.R., M. Jurzysta, and R.L. Z. Thome. Allelopathic activity of root saponins from alfalfa (Medicago sativa L.) on weeds and wheat. Bot. Bull. Acad. Sin. 34:1 (1993).

    CAS  Google Scholar 

  64. Waller, G.R., M. Jurzysta, and R.L. Z. Thome. Root saponins from alfalfa (Medicago sativa L.) and their allelopathic activity on weeds and wheat. Allelopathy J. 2:21 (1995).

    Google Scholar 

  65. Wyman-Simpson, C.L., G.R. Waller, M. Jurzysta, J.K. McPherson, and C.C. Young. Biological activity and chemical isolation of root saponins of six cultivars of alfalfa (Medicago sativa L.). Plant Soil 135:83 (1991).

    Article  CAS  Google Scholar 

  66. Zablotowicz, R.M., R.E. Hoagland, and S.C. Wagner. “Effect of Saponins on the Growth and Activity of Rhizosphere Bacteria”, this volume (1996).

    Google Scholar 

  67. Zambou, K., C.G. Spyropoulos, I. Chinou, and F. Kontos. Saponin-like substances inhibit α-galactosidase production in the endosperm of Fenugreek seeds. Planta 189:207 (1993).

    Article  CAS  Google Scholar 

  68. Zimmer, D.E., M.W. Pedersen, and C.F. McGuire. A bioassay for alfalfa saponins using the fungus, Trichoderma viride Pers. ex Fr. Crop Sci. 7:223 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Hoagland, R.E., Zablotowicz, R.M., Reddy, K.N. (1996). Studies of the Phytotoxicity of Saponins on Weed and Crop Plants. In: Waller, G.R., Yamasaki, K. (eds) Saponins Used in Food and Agriculture. Advances in Experimental Medicine and Biology, vol 405. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0413-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0413-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8041-2

  • Online ISBN: 978-1-4613-0413-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics