Skip to main content

Dynamic Fracture: The Stationary Crack

  • Chapter
Time-Dependent Fracture Mechanics

Part of the book series: Mechanical Engineering Series ((MES))

  • 471 Accesses

Abstract

We consider in this chapter an isotropie homogeneous continuum in which there is a geometrie discontinuity at rest. The discontinuity is also said to be static or stationary, and is subjected to an increasing load applied rapidly. The case of the discontinuity in motion will be treated in the next chapter. However, some features of this late case are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Miannay. “Fracture Mechanics,” Springer-Verlag, New York (1997).

    Google Scholar 

  2. L. B. Freund. “Dynamic Fracture Mechanics,” Cambridge University Press (1990).

    Google Scholar 

  3. L. B. Freund. “The stress-intensity factor due to normal impact loading of the faces of a crack,” Int. J. of Engineering Science, 12, pp. 179–189 (1974).

    Google Scholar 

  4. A. J. Rosakis. “Apphcation of Coherent Gradient Sensing (CGS) to the investigation of dynamic fracture problems,” Optics and Lasers in Engineering, 19, pp. 3–41 (1993).

    Article  Google Scholar 

  5. P. Manogg. “Anwendungen der Schattenoptik zur Untersuchung des Zerreissvorgangs,” in “Proceedings of the international conference on the physics of noncrystalline sohds,” Delft, Netherlands, pp. 481–490 (1964).

    Google Scholar 

  6. J. F. Kalthoff. “Shadow optical method of caustics, Chapter 9,” in “Handbook on experimental mechanics,” Kobayashi, ed., Prentice-Hall, Englewood Chliffs, New Jersey, pp. 430–500 (1987).

    Google Scholar 

  7. J. F. Kalthoff. “Shadow optical method of caustics, Chapter 9,” in “Handbook of experimental Mechanics, 2ND ed.,” Kobayashi, ed., VCH Publishers, pp. 280–300 (1993).

    Google Scholar 

  8. C. Liu, A. J. Rosakis and L. B. Freund. “The interpretation of optical caustics in the presence of dynamic non-uniform crack-tip motion histories: a study based on a higher order transient crack-tip expansion,” Int. J. Solids and Struct., 30, 7, pp. 875–897 (1993).

    Article  MATH  Google Scholar 

  9. J. W. Dally, W. L. Foumey and G. R. Irwin. “On the uniqueness of KID ä relation,” Int. J. Fracture, 27, pp. 159–168 (1985).

    Article  Google Scholar 

  10. A. T. Zehnder and A. J. Rosakis. “Experimental measurement of the temperature rise generated during dynamic crack growth in metals,” Appl. Mech. Rev., 43, 5, Part 2, pp. S260–S265 (1990).

    Article  Google Scholar 

  11. A. J. Rosakis, J. J. Mason and G. Ravichandran. “The conversion ofplastic work to heat around a dynamically propagating crack in metals,” J. Of the Mechanical Behavior of Materials, 4, 4, pp. 375–385 (1993).

    Google Scholar 

  12. J. J. Mason and A. J. Rosakis. “The effects of hyperbolic heat conduction around a dynamically propagating crack tip,” Mechanics of Materials, 15, pp. 263–278 (1993).

    Article  Google Scholar 

  13. D. R. Curran, L. Seaman and D. A. Shockey. “Dynamic failure ofsolids,” NorthHolland, Amsterdam, Elsevier Sc. Pub. (1987).

    Google Scholar 

  14. W. A. Logsdon and J. A. Begley. “Dynamic fracture toughness of SA 533 Grade A Cl ass 2 base metal and weldments,” in “Flaw growth and fracture,” Special Technical Publication 631, American Society of Testing and Materials, Philadelphia, pp. 477–492 (1977).

    Google Scholar 

  15. B. Marandet, G. Phelippeau and G. Sanz. “Influence of loading rate on the fracture toughness of some structural steels in the transition regime,” in “Fracture mechanics: fifteenth symposium,” Special Technical Publication 833, Sanford, ed., American Society ofTesting and Materials, Philadelphia, pp. 622–647 (1984).

    Chapter  Google Scholar 

  16. H. Ernst, P. C. Paris, M. Ross and D. W. Schmidt. “Analysis of load-displacement relationship to determine J-R curve and tearing instability material properties,” in “Fracture Mechanics. ASTM STP 677,” pp. 581–599 (1981).

    Google Scholar 

  17. J. A. Joyce. “Static and dynamic J-R curve testing of A533B steel using the key curve analysis technique,” in “Fracture mechanics: fourteenth symposium, Vol I: Theory and analysis,” Special Technical Publication 791, Lewis and Sines, eds., American Society ofTesting and Materials, Philadelphia, pp. 543–560 (1983).

    Google Scholar 

  18. R. L. Jones and P. C. Davies. “Experimental characterization of dynamic tensile and fracture toughness properties,” Fatigue Fract. Engng. Mater. Struct., 12,5, pp. 423–437 (1989).

    Article  Google Scholar 

  19. 20.“Instrurnented impact testing,” Special Technical Publication 563, American Society of Testing and Materials, Philadelphia (1974?).

    Google Scholar 

  20. W. L. Server. “Impact Three-point bend testing for notched and precracked specimens,” J. Test. Eval., 6, pp. 29–34 (1978).

    Google Scholar 

  21. S. A. Kobayashi, T. Kazino, M. Kamimura and H. Ikawa. “Basic principle of dynamic fracture-toughness evaluation by computer aided instrumented impact testing (CAI) system,” in “ICF 7. Advances in fracture toughness,” Salama, Ravi-Chandar, Taplin and Rama-Rao, eds., Pergamon Press, Vol. 1, pp. 651–658 (1989).

    Google Scholar 

  22. J. F. Kalthoff. “On the measurement of dynamic fracture toughness-A review of recent work,” Int. J. Fracture, 27, pp. 277–298 (1985).

    Article  Google Scholar 

  23. T. Nakamura, C. F. Shih and L. B. Freund. “Three dimensional transient analysis of a dynamically loaded three-point bend-ductile fracture specimen,” in “Non-linear fracture mechanics: Vol I-time dependent fracture,” Special Technical Publication 995, Saxena, Landes and Bassani, eds., American Society of Testing and Materials, Philadelphia, pp. 217–241 (1989).

    Google Scholar 

  24. J. A. Joyce and E. M. Hackett. “An advanced procedure for J-R curve testing using a drop tower,” in “Non-linear fracture mechanics: Vol I-Time dependent fracture,” Special Technical Publication 995, Saxena, Landes and Bassani Eds., American Society of Testing and Materials, Philadelphia, pp. 298–317 (1989).

    Google Scholar 

  25. K. C. Koppenhoefer and R. H. Dodds. “Constraint effects on fracture toughness of impact-loaded, precracked Charpy specimens,” Nuclear Engng. and Design, 162, pp. 145–168 (1996).

    Article  Google Scholar 

  26. H. J. MacGillivray and D. F. Cannon. “The development of standard methods for determining the dynamic fracture toughness of metallic materials,” in “Rapid load testing,” Special Technical Publication 1130, Chona and Corwin, eds., American Society of Testing and Materials, Philadelphia, pp. 161–179 (1992).

    Chapter  Google Scholar 

  27. M. T. Kirk, J. P. Waskey and R. H. Dodds Jr. “A procedure for drop-tower testing of shallow-cracked, single-edge notched bend specimens,” in “Rapid load testing,” Special Technical Publication 1130, Chona and Corwin, eds., American Society of Testing and Materials, Philadelphia, pp. 50–75 (1992).

    Chapter  Google Scholar 

  28. R. Rintamaa, M. Nevalainen and M. Valo. “Evaluation of dynamic fracture toughness on reactor pressure vessel materials,” in “Transactions of the 11 th international conference on structural mechanics in reactor technology,” Vol. G, Shibata, ed., Atomic Energy Society of Japan, pp. 315–320 (1991).

    Google Scholar 

  29. H. Homma, Y. Kanto and K. Tanaka. “Cleavage fracture under short pulse loading,” tiJournal de Physique IV, “Dymat 91. 3rd International conference on mechanical and physical behavior ofmaterials under dynamic loading,” Vol. 1, pp. 589–596 (1991).

    Google Scholar 

  30. J. A. Joyce and E. M. Hackett. “Dynamic J-R curve testing of a high strength steel using the multiple specimen and key curve techniques,” ASTM STP 905, pp. 741–774 (1984).

    Google Scholar 

  31. J. A. Joyce and E. M. Hackett. “An advanced procedure for J-R curve testing using a drop tower,” in “Non-linear fracture mechanics: Vol I-Time dependent fracture,” Special Technical Publication 995, Saxena, Landes and Bassani, eds., American Society of Testing and Materials, Philadelphia, pp. 298–317 (1989).

    Google Scholar 

  32. W. Schmitt, W. Böhme, W. Klemm, D. Memhard and S. Winkler. “Dynamic characterization of apressure vessel steel,” in “Transactions of the 11 th international conference on structural mechanics in reactor technology,” Vol G, Shibata, ed., Atomic Energy Society of Japan, pp. 291–302 (1991).

    Google Scholar 

  33. W. Böhme and W. Schmitt. “On the ductile crack initiation and propagation behavior of apressure vessel steel under impact loading,” in “Defect assessments in components-Fundamentals and applications, ESIS/EGF 9,” Blauel and Schwalbe, eds., Mechanical Engineering Publications, London, pp. 681–692 (1991).

    Google Scholar 

  34. R. Rintamaa, M. Nevalainen and M. Val0. “Evaluation of dynamic fracture toughness on reactor pressure vessel materials,” in “SMIRT 11 Transactions, Vol. G,” pp. 315–320 (1991).

    Google Scholar 

  35. C. G. Chipperfield. “A method far determining dynamic JQ and dJ values and its application to ductile steels,” Welding Institute I ASM int. conf. on dynamic fracture toughness, 1, pp. 167–179 (1977).

    Google Scholar 

  36. L. S. Costin, J. Duffy and L. B. Freund. “Fracture initiation in metals under stress wave loading conditions,” in “Fast fracture and Crack arrest, ASTM, STP 627,” Hahn and Kanninen, eds., pp. 301–318 (1977). au]38._R. H. Hawley, J. Duffy and C. F. Shih. “Dynamic notched round bar testing,” in “Metals handbook, volume 8: mechanical testing,” American Society for Metals, Metals Park, Ohio, pp.275–282 (1986).

    Chapter  Google Scholar 

  37. A. T. Nakamura, C. F. Shih and L. B. Freund. “Elastic-plastic analysis of dynamically loaded circumferentially notched round bar,” Eng. Fract. Mechanics, 22, pp. 437–452 (1985).

    Article  Google Scholar 

  38. H. Couque, C. P. Leung and S. J. Hudak, Jr. “Effect of planar size and dynamic loading rate on initiation and propagation toughness of a moderate-toughness steel,” Engng. Fracture Mech., 47, 2, pp. 249–267 (1994).

    Article  Google Scholar 

  39. J. R. Klepaczko and A. Solecki. “Effect of tempering on quasi-static and impact fracture toughness and mechanical properties for 5140H steel,” Met. Trans. A, 15A, pp. 901–911 (1984).

    Article  Google Scholar 

  40. R. S. J. Curran, D. A. Shockey, J. F. Kalthoff and D. C. Erlich. “Evaluation of dynamic crack instability,” Int. J. Fracture, 22, pp. 217–229 (1983).

    Article  Google Scholar 

  41. D. A. Shockey, J. F. Kalthoff and D. C. Erhch. “Evaluation of dynamic crack instability,” Int. J. Fracture, 22, pp. 217–222 (1983).

    Article  Google Scholar 

  42. D. A. Shockey. “Dynamic fracture testing,” in “Metals handbook, ninth edition,” 8, pp. 259–298 (1985).

    Google Scholar 

  43. K. Ravi-Chandar and R. J. Clifton. “Dynamic fracture under plane wave loading,” Int. J of Fracture, 40, pp. 157–201 (1989).

    Article  Google Scholar 

  44. V. Prakash and R. J. Clifton. “Experimental and analytical investigation of dynamic fracture under conditions of plane strain,” in “Proceedings 22nd national symposium fract. mech.,” Special Technical Publication 1131, American Society of Testing and Materials, Philadelphia, pp. 412–444 (1992).

    Google Scholar 

  45. Y. Lee and V. Prakash. “Dynamic fracture toughness of 4340 VAR steel und er conditions of plane strain,” Metall. and Mater. Trans. A, 26 App., 2527–2543 (1995).

    Article  Google Scholar 

  46. K. Ravi-Chandar and W. G. Knauss. “An experimental investigation into dynamic fracture: I. Crack initiation and arrest,” Int. J. Fracture, 25, pp. 247–262 (1984).

    Article  Google Scholar 

  47. K. Ravi-Chandar and W. G. Knauss. “An experimental investigation into dynamie fracture: H. Microstructural aspects,” Int. J. Fracture, 26, pp. 65–80 (1984).

    Article  Google Scholar 

  48. J. M. Krafft. “Correlation of plane strain crack toughness with strain hardening characteristics of a low, a medium, and a high strength steel,” Applied Materials Research, pp.88–1 01 (1965).

    Google Scholar 

  49. C. W. Marschall, M. P. Landow, G. M. Wilkowski and A. R. Rosenfield. “Comparison of static and dynamic strength and J-R curves of various piping materials from the IPIRG-I program,” Int. J. Press. Vess. and Piping, 62, pp. 49–58 (1995).

    Article  Google Scholar 

  50. H. Couque, R. J. Asaro, J. Duffy and S. H. Lee. “Correlations of microstructure with dynamic and quasi-static fracture in a plain carbon steel,” Metall. Trans. A, 19A, pp. 2179–2206 (1988).

    Google Scholar 

  51. K.C. Koppenhoeffer and R. H. Dodds. “A numerical investigation of loading rate effects in pre-cracked CVN specimens,” in “Fatigue and fracture mechanies: Twenty-ninth volume, ASTM STP 1332,” Panotin and Sheppard, eds., American Society for Testing and Materials, West Conshohocken, PA, USA, pp. 135–153 (1999).

    Google Scholar 

  52. P. R. Guduru, R. P. Singh, G. Ravichandran and A. J. Rosakis. “Dynamic crack initiation in ductile steels,” J. Mech. Phys. Solids, 46,10, PP. 1997–2016 (1998). au]55._B. Moran, R. J. Asaro and C. F. Shih. “Effects of material rate sensitivity and void nucleation on fracture initiation in a circumferentially cracked bar,” Met. Trans. A, 22A, pp.161–170 (1991).

    Article  Google Scholar 

  53. A. Needleman and v. Tvergaard. “Mesh effeets in the analysis of dynamic ductile crack growth,” Engng. Fracture Mech., 47, 1, pp. 75–91 (1994).

    Article  Google Scholar 

  54. J. F. Kalthoff. “Shadow optical analysis of dynamic shear fracture,” Optical Engng., 27, 10, pp. 835–840 (1988). au]58._J. F. Kalthoff and S. Winkler. “Failure mode transition at high rates of shear loading,” in “Impact 87. Impact loading and dynamic behavior of materials,” Chiern, Kunze and Meyer, eds., p. 185–195 (1987).

    Google Scholar 

  55. J. Y. Lee and L. B. Freund. “Fracture initiation due to asymmetrie impact loading of an edge cracked plate,” J. Appl. Mech., 57, p. 104–111 (1990).

    Article  Google Scholar 

  56. A. Needleman and v. Tvergaard. “Analysis of a brittle-ductile transition under dynamic shear loading,” Int. J. Solids and Struct., 12, 17/18, pp. 2571–2590 (1995).

    Article  Google Scholar 

  57. M. Zhou, A. J. Rosakis and G. Ravichandran. “Dynamically propagating shear bands in impact-loaded prenotched plates-J. Experimental investigations of temperature signatures and propagation speed,” J. Mech. Phys. Solids, 44, 6, pp. 981–1006 (1996).

    Article  Google Scholar 

  58. M. Zhou, G. Raviehandran and A. J. Rosakis. “Dynamically propagating shear bands in impact-loaded prenotched plates-2. Numerieal simulations,” J. Mech. Phys. Solids, 44, 6, pp. 1007–1032 (1996).

    Article  Google Scholar 

  59. S. Mercier and A. Molinari. “Steady-state shear band propagation under dynamic eonditions,” J. Mech. Phys. Solids, 46,8,pp. 1463–1495 (1998).

    Google Scholar 

  60. D. Rittel and H. Maigre. “On mixed-mode dynamic crack initiation in brittle solids,” in “ICF9-Advances in fracture research-VoI.6,” Karihaloo et al., eds., pp. 2941–2948 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miannay, D.P. (2001). Dynamic Fracture: The Stationary Crack. In: Time-Dependent Fracture Mechanics. Mechanical Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0155-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0155-4_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6537-5

  • Online ISBN: 978-1-4613-0155-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics