Advertisement

Functional Characteristics of Central Vestibular Neurons

  • Wolfgang Precht

Abstract

In the preceding papers the morphology of the afferent vestibular pathway from the receptor (Chap. 1) through the primary neurons to the vestibular nuclei (Chap. 2) has been summarized, and a review of the functional properties of the primary afferents has been given (Chap. 11). Since, with few exceptions, e.g., the direct projection to the cerebellum (62), vestibular afferents synapse in the vestibular nuclei, knowledge of the response properties of vestibular secondary and higher order neurons is an important prerequisite in the understanding of the information processing occurring between receptors and effectors. In this paper the functional properties of the neurons in the vestibular nuclei will be reviewed with emphasis on their response to vestibular (canal and otolith) stimulation. As far as data allow a comparative physiologic approach will be taken describing the vestibular neuron properties of frog, cat, and monkey.

Keywords

Semicircular Canal Vestibular Nucleus Primary Afferents Vestibular Function Vestibular Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abend, W.K.: Functional organization of the superior vestibular nucleus of the squirrel monkey. Brain Res. 132:65, 1977.PubMedCrossRefGoogle Scholar
  2. 2.
    Abend, W.K.: Response to constant angular accelerations of neurons in the monkey superior vestibular nucleus. Exp. Brain Res. 31:459, 1978.PubMedCrossRefGoogle Scholar
  3. 3.
    Adrian, E.D.: Discharges from vestibular receptors in the cat. J. Physiol. 101:389, 1943.PubMedGoogle Scholar
  4. 4.
    Akaike, T., Fanardjian, V.V., Ito, M., Kumada, M., and Nakajima, H.: Electrophysiological analysis of the vestibulospinal reflex pathway of rabbit. I. Classification of tract cells. Exp. Brain Res. 17:477, 1973.PubMedGoogle Scholar
  5. 5.
    Allum, J.H.J., Graf, W., Dichgans, J., and Schmidt, C.L.: Visual-vestibular interactions in the vestibular nuclei of the goldfish. Exp. Brain Res. 26:463, 1976.PubMedCrossRefGoogle Scholar
  6. 6.
    Anderson, J.H., Blanks, R.H.I., and Precht, W.: Response characteristics of semicircular canal and otolith systems in cat. I. Dynamic responses of primary vestibular fibers. Exp. Brain Res. 32:491, 1978.PubMedGoogle Scholar
  7. 7.
    Barlow, D.E. and Freedman, W.: The cervico-ocular reflex in normal human adults. Soc. Neurosci. 4:912, 1978.Google Scholar
  8. 8.
    Blanks, R.H.I., Anderson, J.H., and Precht, W.: Response characteristics of semicircular canal and otolith systems in cat. II. Responses of trochlear motoneurons. Exp. Brain Res. 32:509, 1978.PubMedCrossRefGoogle Scholar
  9. 9.
    Blanks, R.H.I., Estes, M.S., and Markham, C.H.: Physiological characteristics of vestibular first-order canal neurons in the cat. II. Response to constant angular acceleration. J. Neurophysiol. 38:1250, 1975.PubMedGoogle Scholar
  10. 10.
    Blanks, R.H.I, and Precht, W.: Response properties of vestibular afferents in alert cats during optokinetic stimulation. Neurosci. Lett. 10:225, 1978.PubMedCrossRefGoogle Scholar
  11. 11.
    Buettner, U.W., Büttner, U., and Henn, V.: Transfer characteristics of neurons in vestibular nuclei of the alert monkey. J. Neurophysiol. 41:1614, 1978.PubMedGoogle Scholar
  12. 11a.
    Cazin, L., Precht, W, and Lannau, J.: Optokinetic responses of vestibular nucleus neurons in the cat. Pflügers Arch. 384:31, 1980.PubMedCrossRefGoogle Scholar
  13. 12.
    Chan, Y.S., Hwang, J.C., and Chueng, Y.M.: Crossed sacculo-ocular pathway via the Deiters’ nucleus in cats. Brain Res. Bull. 2:1, 1977.PubMedCrossRefGoogle Scholar
  14. 13.
    Curthoys, I.S.: The development of function of horizontal semicircular canal primary neurons in the rat. Brain Res. 167:41, 1979.PubMedCrossRefGoogle Scholar
  15. 14.
    Curthoys, I.S. and Markham, C.H.: Convergence of labyrinthine influences on units in the vestibular nuclei of the cat. I. Natural stimulation. Brain Res. 35:469, 1971.PubMedCrossRefGoogle Scholar
  16. 15.
    Dichgans, J. and Brandt, T.: Visual-vestibular interaction and motion perception. Bibl. Ophthalmol. 82:327, 1972.PubMedGoogle Scholar
  17. 16.
    Dieringer, N. and Precht, W.: Modification of synaptic input following unilateral labyrinthectomy. Nature 269:431, 1977.PubMedCrossRefGoogle Scholar
  18. 17.
    Dieringer, N. and Precht, W.: Mechanisms of compensation for vestibular deficits in the frog. II. Modification of the inhibitory pathways. Exp. Brain Res. 36:329, 1979.PubMedCrossRefGoogle Scholar
  19. 18.
    Duensing, F. and Schaefer, K.P.: Die Aktivität einzelner Neurone im Bereich der Vestibulariskerne bei Horizontalbeschleunigungen unter besonderer Berücksichtigung des vestibulären Nystagmus. Arch. Psychiat. Nervenkr. 198:225, 1958.PubMedCrossRefGoogle Scholar
  20. 19.
    Duensing, F. and Schaefer, K.P.: Über die Konvergenz verschiedener la-byrinthärer Afferenzen auf einzelne Neurone des Vestibulariskerngebietes.; Arch. Psychiat. Nervenkr. 199:345, 1959.CrossRefGoogle Scholar
  21. 20.
    Fernández, C. and Goldberg, J.M.: Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J. Neurophysiol. 34:661, 1971.PubMedGoogle Scholar
  22. 21.
    Fredrickson, J.M., Schwarz, D., and Kornhuber, H.H.: Convergence and interaction of vestibular and deep somatic afferents upon neurons in the vestibular nuclei of the cat. Acta Otolaryngol. (Stockh.) 61:168, 1966.PubMedCrossRefGoogle Scholar
  23. 22.
    Fuchs, A.F. and Kimm, J.: Unit activity in vestibular nucleus of the alert monkey during horizontal angular acceleration and eye movement. J. Neurophysiol. 38:1140, 1975.PubMedGoogle Scholar
  24. 23.
    Fujita, Y., Rosenberg, J., and Segundo, J.P.: Activity of cells in the lateral vestibular nucleus as a function of head position. J. Physiol. (Lond.) 196:1, 1968.Google Scholar
  25. 24.
    Gacek, R.R.: The course and central termination of first order neurons supplying vestibular end organs in the cat. Acta Otolaryngol. (Stockh.) 254:1, 1969.Google Scholar
  26. 25.
    Gregory, K.M.: Central projections of the eighth nerve in frogs. Brain Behav. Evol. 5:70, 1972.PubMedCrossRefGoogle Scholar
  27. 26.
    Hassul, M., Daniels, P.D., and Kimm, J.: Effects of bilateral flocculectomy on the vestibulo-ocular reflex in the chinchilla. Brain Res. 118:339, 1976.PubMedCrossRefGoogle Scholar
  28. 27.
    Henn, V., Young, L.R., and Finley, C.: Vestibular nucleus units in alert monkeys are also influenced by moving visual fields. Brain Res. 71:144, 1974.PubMedCrossRefGoogle Scholar
  29. 28.
    Heywood, P., Pujol, R., and Hilding, D.A.: Development of the labyrinthic receptors in the guinea pig, cat, and dog. Acta Otolaryngol. 82:359, 1976.PubMedCrossRefGoogle Scholar
  30. 29.
    Hiebert, T.G. and Fernández, C.: Deitersian response to tilt. Acta Otolaryngol. (Stockh.) 60:180, 1965.PubMedCrossRefGoogle Scholar
  31. 30.
    Hikosaka, O. and Maeda, M.: Cervical effects on abducens motoneurons and their interaction with vestibulo-ocular reflex. Exp. Brain Res. 18:512, 1973.PubMedCrossRefGoogle Scholar
  32. 31.
    Hwang, J.C. and Poon, W.F.: An electrophysiological study of the sacculoocular pathways in cats. Jpn. J. Physiol. 25:241, 1975.PubMedCrossRefGoogle Scholar
  33. 32.
    Ito, M., Hongo, T., and Okada, Y.: Vestibular-evoked postsynaptic potentials in Deiters’ neurones. Exp. Brain Res. 7:214, 1969.PubMedCrossRefGoogle Scholar
  34. 33.
    Ito, M., Shiida, T., Yagi, N., and Yamamoto, M.: Visual influence on rabbit’s horizontal vestibulo-ocular reflex that presumably is effected via the cerebellar flocculus. Brain Res. 65:170, 1974.PubMedCrossRefGoogle Scholar
  35. 34.
    Karhunen, E.: Postnatal development of the lateral vestibular nucleus (Deiters’ nucleus) of the rat. Acta Otolaryngol. (Suppl.) 313:1, 1973.CrossRefGoogle Scholar
  36. 35.
    Kasahara, M., Mano, M., Oshima, T., Ozawa, S., and Shimazu, H.: Contralateral short latency inhibition of central vestibular neurones in the horizontal canal system. Brain Res. 8:376, 1968.PubMedCrossRefGoogle Scholar
  37. 36.
    Kasahara, M. and Uchino, Y.: Selective mode of commissural inhibition induced by semicircular canal afferents on secondary vestibular neurons in the cat. Brain Res. 34:366, 1971.PubMedCrossRefGoogle Scholar
  38. 37.
    Kawai, N., Ito, M., and Nozue, M.: Postsynaptic influences on the vestibular non-Deiters nuclei from primary vestibular nerve. Exp. Brain Res. 8:190, 1969.PubMedCrossRefGoogle Scholar
  39. 38.
    Keller, E.L.: Behavior of horizontal semicircular canal afferents in alert monkey during vestibular and optokinetic stimulation. Exp. Brain Res. 24:459, 1976.PubMedCrossRefGoogle Scholar
  40. 39.
    Keller, E.L. and Kamath, B.Y.: Characteristics of head rotation and eye movement-related neurons in alert monkey vestibular nucleus. Brain Res. 100:182, 1975.PubMedCrossRefGoogle Scholar
  41. 40.
    Keller, E.L. and Precht, W.: Persistence of visual response in vestibular nucleus neurons in cerebellectomized cat. Exp. Brain Res. 32:591, 1978.PubMedCrossRefGoogle Scholar
  42. 41.
    Keller, E.L. and Precht, W.: Adaptive modification of central vestibular neurons in response to visual stimulation through reversing prisms. J. Neurophysiol. 42:896, 1979.PubMedGoogle Scholar
  43. 42.
    Korn, H., Sotelo, C., and Bennett, M.V.L.: The lateral vestibular nucleus of the toadfish Opsanus tau: Ultrastructural and electrophysiological observations with special reference to electrotonic transmission. Neuroscience 2:851, 1977.CrossRefGoogle Scholar
  44. 43.
    Korn, H., Sotelo, C., and Crepel, F.: Electrotonic coupling between neurons in the rat lateral vestibular nucleus. Exp. Brain Res. 16:255, 1973.PubMedCrossRefGoogle Scholar
  45. 44.
    Kubo, T., Matsunaga, T., and Matano, S.: Effects of sinusoidal rotational stimulation on the vestibular neurons of rats. Brain Res. 88:543, 1975.PubMedCrossRefGoogle Scholar
  46. 45.
    Kubo, T., Matsunaga, T., and Matano, S.: Convergence of ampullar and macular inputs on vestibular nuclei unit of the rat. Acta Otolaryngol. 84:166, 1977.PubMedCrossRefGoogle Scholar
  47. 46.
    Ladpli, R. and Brodai, A.: Experimental studies of commissural and reticular formation projections from the vestibular nuclei in the cat. Brain Res. 8:65, 1968.PubMedCrossRefGoogle Scholar
  48. 47.
    Lannou, J., Precht, W., and Cazin, L.: The postnatal development of functional properties of central vestibular neurons in the rat. Brain Res. 175:219, 1979.PubMedCrossRefGoogle Scholar
  49. 48.
    Magnus, R. Körperstellung. Berlin, Springer, 1924.Google Scholar
  50. 49.
    Mano, M., Oshima, T., and Shimazu, H.: Inhibitory commissural fibres interconnecting the bilateral vestibular nuclei. Brain Res. 8:378, 1968.PubMedCrossRefGoogle Scholar
  51. 50.
    Markham, C.H.: Midbrain and contralateral labyrinth influences on brainstem vestibular neurons in the cat. Brain Res. 9:312, 1968.PubMedCrossRefGoogle Scholar
  52. 51.
    Markham, C.H. and Curthoys, I.S.: Convergence of labyrinthine influences on units in the vestibular nuclei of the cat. II. Electrical stimulation. Brain Res. 43:383, 1972.PubMedCrossRefGoogle Scholar
  53. 52.
    Markham, C.H., Yagi, T., and Curthoys, I.S.: The contribution of the contrala teral labyrinth to second order vestibular neuronal activity in the cat. Brain Res. 138:99, 1977.PubMedCrossRefGoogle Scholar
  54. 53.
    Matsuoka, I., Fukuda, N., Takaori, S., and Morimoto, M.: Responses of single neurons of the vestibular nuclei to lateral tilt and caloric stimulation in the intact and hemilabyrinthectomized cats. Acta Otolaryngol. (Stockh.) 72:182, 1971.PubMedCrossRefGoogle Scholar
  55. 54.
    Melvill Jones, G. and Milsum, J.H.: Neural response of the vestibular system to translational acceleration. In: Conference on Systems Analysis Approach to Neurophysiological Problems. Minnesota, Brainerd, 1969.Google Scholar
  56. 55.
    Melvill Jones, G. and Milsum, J.H.: Characteristics of neural transmission from the semicircular canal to the vestibular nuclei of cats. J. Physiol. 209:295, 1970.Google Scholar
  57. 56.
    Orlovsky, G.N. and Pavlova, G.A.: Response of Deiters’ neurons to tilt during locomotion. Brain Res. 42:212, 1972.PubMedCrossRefGoogle Scholar
  58. 57.
    Ozawa, S., Precht, W., and Shimazu, H.: Crossed effects on central vestibular neurons in the horizontal canal system of the frog. Exp. Brain Res. 19:394, 1974.PubMedCrossRefGoogle Scholar
  59. 58.
    Peterson, B.W.: Distribution of neural responses to tilting within the vestibular nuclei of the cat. J. Neurophysiol. 33:750, 1970.PubMedGoogle Scholar
  60. 59.
    Precht, W.: The physiology of the vestibular nuclei. In Kornhuber, H.H. (ed.): Handbook of Sensory Physiology, Vol. VI. Heidelberg, Springer-Verlag, 1974, pp. 353–416.Google Scholar
  61. 60.
    Precht, W.: Vestibular system. In Goyton, A.C. and Hunt, C.C. (eds.): MTP International Review of Sciences, Neurophysiology. Physiology Series One, Vol. 3. London, Butterworths Univ. Park Press, 1975, pp. 82–149.Google Scholar
  62. 61.
    Precht, W.: Physiology of the peripheral and central vestibular systems. In Llinás, R. and Precht, W. (eds.): Frog Neurobiology. New York, Springer-Verlag, 1976, pp. 481–512.Google Scholar
  63. 62.
    Precht, W.: Neuronal operations in the vestibular system. In Braitenberg, V. (ed.): Studies of Brain Function, Vol. 2. New York, Springer-Verlag, 1978, pp. 226.Google Scholar
  64. 63.
    Precht, W.: Vestibular mechanisms. Ann. Rev. Neurosci. 2:265, 1979.PubMedCrossRefGoogle Scholar
  65. 64.
    Precht, W., Grippo, J., and Wagner, A.: Contribution of different types of central vestibular neurons to the vestibulo-spinal system. Brain Res. 4:119, 1967.PubMedCrossRefGoogle Scholar
  66. 65.
    Precht, W., Richter, A., Ozawa, S., and Shimazu, H.: Intracellular study of frog’s vestibular neurons in relation to the labyrinth and spinal cord. Exp. Brain Res. 19:377, 1974.PubMedCrossRefGoogle Scholar
  67. 66.
    Precht, W. and Shimazu, H.: Functional connections of tonic and kinetic vestibular neurons with primary vestibular afferents. J. Neurophysiol. 28:1014, 1965.PubMedGoogle Scholar
  68. 67.
    Precht, W., Shimazu, H., and Markham, C.H.: A mechanism of central compensation of vestibular function following hemilabyrinthectomy. J. Neurophysiol. 29:996, 1966.PubMedGoogle Scholar
  69. 68.
    Richter, A., Precht, W., and Ozawa, S.: Responses of neurons of lizard’s, Lacerta viridis, vestibular nuclei to electrical stimulation of the ipsilateral and contralateral VIIIth nerves. Pfügers Arch. 355:85, 1975.CrossRefGoogle Scholar
  70. 69.
    Robinson, D.A.: Oculomotor unit behavior in the monkey. J. Neurophysiol. 33:393, 1970.PubMedGoogle Scholar
  71. 70.
    Rubin, A.M., Young, J.H., Milne, A.C., Schwarz, D.W.F., and Fredrickson, J.M.: Vestibular-neck integration in the vestibular nuclei. Brain Res. 96:99, 1975.PubMedCrossRefGoogle Scholar
  72. 71.
    Schor, R.H.: Responses of cat vestibular neurons to sinusoidal roll tilt. Exp. Brain Res. 20:347, 1974.PubMedCrossRefGoogle Scholar
  73. 72.
    Shimazu, H. and Precht, W.: Tonic and kinetic responses of cat’s vestibular neurons to horizontal angular acceleration. J. Neurophysiol. 28:991, 1965.PubMedGoogle Scholar
  74. 73.
    Shimazu, H. and Precht, W.: Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. J. Neurophysiol. 29:467, 1966.PubMedGoogle Scholar
  75. 74.
    Shimazu, H. and Smith, CM.: Cerebellar and labyrinthine influences on single vestibular neurons identified by natural stimuli. J. Neurophysiol. 34:493, 1971.PubMedGoogle Scholar
  76. 75.
    Shinoda, Y. and Yoshida, K.: Dynamic characteristics of responses to horizontal head angular acceleration in the vestibuloocular pathway in the cat. J. Neurophysiol. 37:653, 1974.PubMedGoogle Scholar
  77. 76.
    Stein, B.M. and Carpenter, M.B.: Central projections of portions of the vestibular ganglia innervating specific parts of the labyrinth in the rhesus monkey. Am. J. Anat. 120:281, 1967.CrossRefGoogle Scholar
  78. 77.
    Waespe, W. and Henn, V.: Neuronal activity in the vestibular nuclei of the alert monkey during vestibular and optokinetic stimulation. Exp. Brain Res. 27:523, 1977.PubMedCrossRefGoogle Scholar
  79. 78.
    Walberg, F., Bowsher, D., and Brodai, A.: The termination of primary vestibular fibers in the vestibular nuclei in the cat. An experimental study with silver methods. J. Comp. Neurol. 110:391, 1958.PubMedCrossRefGoogle Scholar
  80. 79.
    Wilson, V.J. and Felpel, L.P.: Specificity of semicircular canal input to neurons in the pigeon vestibular nuclei. J. Neurophysiol. 35:253, 1972.PubMedGoogle Scholar
  81. 80.
    Wilson, V.J. and Wylie, R.M.: A short-latency labyrinthine input to the vestibular nuclei in the pigeon. Science 168:124, 1970.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • Wolfgang Precht

There are no affiliations available

Personalised recommendations