Skip to main content
Log in

Visual-vestibular interactions in the vestibular nuclei of the goldfish

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The responses of vestibular nuclei neurons of relaxed unaesthetized goldfish have been examined with trapezoid velocity stimuli under three conditions.

Responses to horizontal body rotation in the dark (pure vestibular stimulation) resemble those observed in vestibular nerve afferents.

Optokinetic responses to exclusive visual surround-motion are also direction-specific and, in contrast to vestibular responses, exhibit a tonic response to constant velocity. They show three different response profiles, classified A, B or C, based on the neuron's discharge rate: either increasing, decreasing or remaining constant once surround motion is maintained at constant velocity. Following these dynamic effects, optokinetic responses have a maintained modulation of resting discharge until deceleration commences. The time constants associated with the dynamic effects vary between 1 and 11 seconds. Steady-state modulation of optokinetic responses shows a weak relation to stimulus velocities exceeding 10 deg/sec.

Responses to body rotation in the light were found to linearly combine the weighted vestibular and optokinetic responses so that accurate velocity information is available for sensory and motor functions independent of the neuron's vestibular (I, II) or optokinetic (A, B, C) response type. The principle of this visual-vestibular interaction is discussed with respect to multisensory processing within the vestibular nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, E.D.: Discharges from vestibular receptors in the cat. J. Physiol. (Lond.) 101, 384–407 (1943)

    Google Scholar 

  • Ariens Kappers, C.U., Huber, G.C., Crosby, E.C.: The Comparative Anatomy of the Nervous System of Vertebrates Including Man. Vol. 1, p. 455. New York: Hafner Press 1965

    Google Scholar 

  • Azzena, G.B., Azzena, M.T., Marini, R.: Optokinetic nystagmus and the vestibular nuclei. Exp. Neurol. 42, 158–168 (1974)

    Google Scholar 

  • Baarsma, E.A., Collewijn, H.: Vestibulo-ocular and optokinetic reactions to rotation and their interaction in the rabbit. J. Physiol. (Lond.) 238, 603–625 (1974)

    Google Scholar 

  • Barlow, H.B., Hill, R.M., Levick, W.R.: Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol. (Lond.) 173, 377–407 (1964)

    Google Scholar 

  • Bizzi, E., Pompeiano, O., Somogyi, J.: Spontaneous activity of single vestibular neurons of unrestrained cats during sleep and wakefulness. Arch. ital. Biol. 102, 308–330 (1964)

    Google Scholar 

  • Brandt, T., Dichgans, J., Koenig, E.: Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Exp. Brain Res. 16, 476–491 (1973)

    Google Scholar 

  • Cronly-Dillon, T.R.: Units sensitive to direction of movement in goldfish optic tectum. Nature (Lond.) 203, 214–215 (1964)

    Google Scholar 

  • Dichgans, J., Schmidt, C.L., Graf, W.: Visual input improves the speedometer function of the vestibular nuclei in the goldfish. Exp. Brain Res. 18, 319–322 (1973)

    Google Scholar 

  • Duensing, F., Schaefer, K.P.: Die Aktivität einzelner Neurone im Bereich der Vestibulariskerne bei Horizontalbeschleunigungen unter besonderer Berücksichtigung des vestibulären Nystagmus. Arch. Psychiat. Nervenkr. 198, 225–252 (1958)

    Google Scholar 

  • Easter, S.S.: Pursuit eye movements in goldfish. Vision Res. 12, 673–688 (1972)

    Google Scholar 

  • Fernandez, C, Goldberg, J.M.: Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J. Neurophysiol. 34, 661–675 (1971)

    Google Scholar 

  • Fischer, M.H., Kornmüller, A.E.: Optokinetisch ausgelöste Bewegungswahrnehmungen und optokinetischer Nystagmus. J. Psychol. Neurol. (Lpz.) 41, 383–420 (1930)

    Google Scholar 

  • Flock, A., Russell, I.J.: The post-synaptic action of efferent fibers in the lateral line organ of the burbot Lota Lota. J. Physiol. (Lond.) 255, 591–605 (1973)

    Google Scholar 

  • Galley, N., Klinke, R., Pause, M., Storch, W.-H.: The effect of Flaxedil (Gallamine triethiodide) on the efferent endings in the cochlea. Pflügers Arch. 330, 1–4 (1971)

    Google Scholar 

  • Galley, N., Klinke, R., Oertel, W., Pause, M., Storch, W.-H.: The effect of intracochlearly administered acetylcholone-blocking agents on the efferent synapsis of the cochlea. Brain Res. 64, 55–63 (1973)

    Google Scholar 

  • Gardner, E.P., Fuchs, A.F.: Single unit response to natural vestibular stimuli and eye movements in deep cerebellar nuclei of the alert rhesus monkey. J. Neurophysiol. 38, 672–649 (1975)

    Google Scholar 

  • Ghelarducci, B., Ito, M., Yagi, N.: Impulse discharges from flocculus Purkinje cells of alert rabbits during visual stimulation combined with head rotation. Brain Res. 87, 66–72 (1975)

    Google Scholar 

  • Gleisner, L., Henriksson, N.G.: Efferent and afferent activity pattern in the vestibular nerve of the frog. Acta oto-laryng. (Stockh.) Suppl. 192, 90–103 (1963)

    Google Scholar 

  • Goldberg, J.M., Fernandez, C.: Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. J. Neurophysiol. 34, 635–660 (1971)

    Google Scholar 

  • Graf, W.: Optokinetische Interactionen mit Spontanverhalten und Beschleunigungsreaktion von Vestibulariskernneuronen beim Goldfisch. M.D. Thesis, University of Freiburg 1976

  • Hartmann, R., Hasenpusch, U., Klinke, R.: Properties of afferent neurons of the goldfish semi-circular canal under sinusoidal rotatory stimulation. Pflügers Arch. Suppl. 343, R.71 (1973)

    Google Scholar 

  • Hartmann, R., Klinke, R.: System analysis of properties of primary vestibular fibers. Exp. Brain Res. Suppl. 23, 165 (1975)

    Google Scholar 

  • Henn, V., Young, L.R., Finley, C.: Vestibular nucleus units in alert monkeys are also influenced by moving visual fields. Brain Res. 71, 144–149 (1974)

    Google Scholar 

  • Jacobson, M., Gaze, R.M.: Types of response from single units in the optic tectum and optic nerve of the goldfish. Quart. J. exp. Physiol. 49, 199–209 (1964)

    Google Scholar 

  • Keller, E.L., Daniels, P.D.: Oculomotor related interaction of vestibular and visual stimulation in vestibular nucleus cells in alert monkey. Exp. Neurol. 46, 187–198 (1975)

    Google Scholar 

  • Klinke, R., Schmidt, C.L.: Efferent influence on the vestibular organ during active movements of the body. Pflügers Arch. 318, 325–332 (1970)

    Google Scholar 

  • Kubo, T., Matsunaga, T., Matano, S.: Effects of sinusoidal rotational stimulation on the vestibular neurons of rats. Brain Res. 88, 543–548 (1975)

    Google Scholar 

  • Maekawa, K., Simpson, J.I.: Climbing fiber responses evoked in the vestibulo-cerebellum of rabbit from visual system. J. Neurophysiol. 36, 649–666 (1973)

    Google Scholar 

  • Mehler, W.R.: Comparative anatomy of the vestibular nuclear complex in submammalian vertebrates. In: Progress in Brain Research. Vol. 37, Basic Aspects of Central Vestibular Mechanisms. (A. Brodal, O. Pompeiano, Eds.), pp. 56–67. Amsterdam: Elsevier 1972

    Google Scholar 

  • Precht, W., Llinas, R., Clarke, M.: Physiological responses of frog vestibular fibers to horizontal angular rotation. Exp. Brain Res. 13, 378–407 (1971)

    Google Scholar 

  • Shimazu, H., Precht, W.: Tonic and kinetic responses of cats vestibular neurons to horizontal angular rotation. J. Neurophysiol. 28, 991–1013 (1965)

    Google Scholar 

  • Shimazu, H., Precht, W.: Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. J. Neurophysiol. 29, 467–492 (1966)

    Google Scholar 

  • Simpson, J.I., Alley, K.E.: Visual climbing fiber input to rabbit vestibulo-cerebellum: a source of direction-specific information. Brain Res. 82, 302–308 (1974)

    Google Scholar 

  • Steinhausen, W.: Über den Nachweis der Bewegung der Cupula in der intakten Bogengangsampulle des Labyrinthes bei der natürlichen rotatorischen und colorischen Reizung. Arch. Ges. Physiol. 228, 322–328 (1931)

    Google Scholar 

  • Steinhausen, W.: Über die Beobachtung der Cupula in der Bogengangsampulle des Labyrinths des lebenden Hechts. Arch. Ges. Physiol. 232, 500–512 (1933)

    Google Scholar 

  • Wartok, D., Marks, W.B.: Directionally selective visual units recorded in the optic tectum of the goldfish. J. Neurophysiol. 36, 588–604 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allum, J.H.J., Graf, W., Dichgans, J. et al. Visual-vestibular interactions in the vestibular nuclei of the goldfish. Exp Brain Res 26, 463–485 (1976). https://doi.org/10.1007/BF00238821

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00238821

Key words

Navigation