Skip to main content

Retinoids, Polyamines and Teratocarcinoma Differentiation

  • Chapter
Vitamins and Cancer

Part of the book series: Experimental Biology and Medicine, Vol. 10 ((EBAM,volume 10))

  • 89 Accesses

Abstract

Teratocarcinomas are tumors of gonadal tissue origin which contain an array of differentiated cell phenotypes derived from a population of undifferentiated stem cells known as embryonal carcinoma (EC) cells. These undifferentiated EC cells are the primary malignant cells of such tumors, while their differentiated derivatives are benign.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Graham, C. Teratocacrinoma cells and normal mouse embryogenesis. In: M.I. Sherman (ed.), Concepts in Mammalian Embryogenesis, pp. 315–362. Cambridge, Mass: M.I.T. Press, 1977.

    Google Scholar 

  2. Sherman, M.I. Differentiation of teratoma cell line PCC4azal in vitro. In: M.I. Sherman and D. Solter (eds.), Teratomas and Differentiation, pp. 189–196. New York: Academic Press, 1975.

    Google Scholar 

  3. Martin, G.R., and Evans, M.J. Differentiation of clonal lines of teratocarcinoma cells: Formation of embryoid bodies in vitro. Proc. Natl. Acad. Sci. USA, 72: 1441–1444, 1975.

    Article  PubMed  CAS  Google Scholar 

  4. McBurney, M.W. Clonal lines of teratocarcinoma cells in vitro: Differentiation and cytogenetic characteristics. J. Cell Physiol., 89: 441–449, 1976.

    Article  PubMed  CAS  Google Scholar 

  5. Sherman, M.I., and Millar, R.A. F9 embryonal carcinoma cells can differentiate into endoderm-like cells. Dev. Biol., 63: 27–33, 1978

    Article  PubMed  CAS  Google Scholar 

  6. Jetten, A.M., Jetten, M.E.R., and Sherman, M.I. Stimulation of differentiation of several murine embryonal carcinoma cell lines by retinoic acid. Exp. Cell Res., 124: 281–288, 1979.

    Article  Google Scholar 

  7. Strickland, S., and Mahdavi, V. The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell, 13: 393–398, 1978.

    Article  Google Scholar 

  8. Jakob, H., Dubois, P., Eisen, H., and Jacob, F. Effects de 1’hexamethylene-bisacetamide sur la differentiation de cellules de carcinome embryonnaire. C.R. Acad. Sci. Ser. D. 286: 109–114, 1978.

    CAS  Google Scholar 

  9. Schindler, J., Kelly, M., and Mann, P.P. Inhibition of ornithine decarboxylase induces embryonal carcinoma cell differentiation. Biochem. Biophys. Res. Commun., 114: 410–414, 1983.

    Article  PubMed  CAS  Google Scholar 

  10. Schindler, J., Kelly, M., and Mann, P.P. The response of several murine embryonal carcinoma cell lines to stimulation of differentiation by α(-difluorome thy lorni thine. J. Cell Physiol, 122: 1–6, 1985.

    Article  PubMed  CAS  Google Scholar 

  11. Heby, O., Oredsson, S.M., Olsson, I. and Marton, L.J. A role for the polyamines in mouse embryonal carcinoma (F9 and PCC3) cell differentiation but not in human promyelocytic leukemia (HL-60) cell differentiation. Adv. Polyamine Res., 4: 727–742, 1983.

    CAS  Google Scholar 

  12. Mintz, B., and Illemensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl. Acad. Sci. USA, 72: 3585–3589, 1975.

    Article  PubMed  CAS  Google Scholar 

  13. Dewey, M.J., Martin, Jr., D.W., Martin, G.R., and Mintz, B. Mosaic mice with teratocarcinoma-derived mutant cells deficient in hypoxanthine hosphoribosyltransferase. Proc. Natl. Acad. Sci. USA, 74: 5564–5568, 1977.

    Article  PubMed  CAS  Google Scholar 

  14. Sherman, M.I., Matthaei, K.I., & Schindler, J. Studies on the mechanism of induction of embryonal carcinoma cell differentiation by retinoic acid. Ann. N.Y. Acad. Sci. 359: 192–199, 1981.

    Article  PubMed  CAS  Google Scholar 

  15. Mamont, P.S., Duchesne, M.-C., Grove, J., and Bey, P. Antiproliferative properties of DL-α-difluoromethylornithine in cultured cells. A consequence of the irreversible inhibition of ornithine decarboxylase. Biochem. Biophys. Res. Commun. 81: 58–66, 1978.

    Article  PubMed  CAS  Google Scholar 

  16. Heby, O., and Emmanuelsson, H. Role of the polyamines in germ cell differentiation and in early embryonic development. Med. Biol., 59: 417–423, 1981.

    PubMed  CAS  Google Scholar 

  17. Brachet, J., Mamont, P., Boloukhère, M., Baltus, E., Hanocq-Quertier, J. Effets d’un inhibiteur de la synthese des polyamines sur la morphogénése, chez l’oursin, le chétoptère et l’algue, Acetabularia. C.R. Acad. Sci. [D] (Paris), 287: 1289–1292, 1978.

    CAS  Google Scholar 

  18. Lowkvist, B., Heby, O., Emanuelsson, H. Essential role of the polyamines in early chick embryo development. J. Embryol. Exp. Morphol., 60: 83–89, 1980.

    PubMed  CAS  Google Scholar 

  19. Fozard, J.R., Part, M.-L., Prakash, N.J., Grove, J., Schechter, P.J., Sjoerdsma, A., and Koch-Weser, J. L-ornithine decarboxylase: An essential role in early mammalian embryogenesis. Science, 208: 505–507, 1980.

    Article  PubMed  CAS  Google Scholar 

  20. Fozard, J.R., Part, M.-L., Prakash, N.J., and Grove, J. Inhibition of murine embryonic development by α-difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase. Eur. J. Pharmacol., 65: 379–385, 1980.

    Article  PubMed  CAS  Google Scholar 

  21. Rath, N.C., and Reddi, A.H. Changes in polyamines, RNA synthesis, and cell proliferation during matrix-induced cartilage, bone, and bone marrow development. Dev. Biol. 82: 211–216, 1981.

    Article  PubMed  CAS  Google Scholar 

  22. Takano, T., Takigawa, M., and Suzuki, F. Role of polyamines in expression of the differentiated phenotype of chondrocytes in culture. Med. Biol., 59: 423–427, 1981.

    PubMed  CAS  Google Scholar 

  23. Bethell, D.R., and Pegg, A.E. Polyamines are needed for the differentiation of 3T3-L1 fibroblasts into adipose cells. Biochem, Biophys. Res. Commun., 102: 272–278, 1983.

    Article  Google Scholar 

  24. Chen, K.Y. and Liu, A.Y.-C. Differences in polyamine metabolism of differentiated and undifferentiated neuroblastoma cells. FEBS Lett. 134: 71–74, 1981.

    Article  PubMed  CAS  Google Scholar 

  25. Sugiura, M., Shafman, T., Mitchell, T., Griffin, J., and Kufe, D. Involvement of spermidine in proliferation and differentiation of human promyelocytic leukemia cells. Blood (in press).

    Google Scholar 

  26. Pierce, G.B., Shikes, R., and Fink, L.M. Cancer-A Problem of Developmental Biology. Prentice Hall, Englewood Cliffs, N.J., 1978.

    Google Scholar 

  27. Sporn, M.B., and Roberts, A.B. Role of retinoids in differentiation and carcinogenesis. Cancer Res., 43: 3034–3039, 1983.

    PubMed  CAS  Google Scholar 

  28. Huberman, E., Weeks, C., Herrmann, A., Callaham, M., and Slaga, T. Alterations in polyamine levels induced by phorbol diesters and other agents that promote differentiation in human promyelocytic leukemia cells. Proc. Natl. Acad. Sci. USA, 78: 1062–1066, 1981.

    Article  PubMed  CAS  Google Scholar 

  29. Chapman, S.K. Antitumor effects of vitamin A and inhibitors of ornithine decarboxylase in cultured neuroblastoma and glioma cells. Life Sciences, 26: 1359–1363, 1980.

    Article  PubMed  CAS  Google Scholar 

  30. Chen, K.Y., and Liu, A.Y.-C. The role of polyamines in the differentiation of mouse neuroblastoma cells. Adv. Polyamine Res., 4: 743–750, 1983.

    CAS  Google Scholar 

  31. Boutwell, R.K. The function and mechanisms of promotors of carcinogenesis. CRC Crit. Rev. Toxicol. 2: 410,437, 1974.

    Google Scholar 

  32. O’Brien, T.G. The induction of ornithine decarboxylase as an early, possibly obligatory, event in mouse skin carcinogenesis. Cancer Res., 36; 2644–2650, 1976.

    PubMed  Google Scholar 

  33. Weekes, R.G., Verma, A.K., and Boutwell, R.K. Inhibition by putrescine of the induction of epidermal ornithine decarboxylase activity and tumor promotion caused by 12-0-tetradecanoylphorbol-13-acetate. Cancer Res., 40: 4013–4018, 1980.

    PubMed  CAS  Google Scholar 

  34. Verma, A.K., Rice, H.M., Shapas, B.G., and Boutwell, R.K. Inhibition of of 12-0-tetradecanoylphorbol-13-acetate-induced ornithine decarboxylase activity in mouse epidermis by vitamin A analogs (retinoids). Cancer Res., 38: 793–797, 1978.

    PubMed  CAS  Google Scholar 

  35. Kelly, M., Mann, P.P., & Schindler, J. Alterations in polyamine metabolism during embryonal carcinoma cell differentiation in vitro. Dev. Biol, in press.

    Google Scholar 

  36. Schindler, J., Matthaei, K.I., & Sherman, M.I. Isolation and characterization of mouse mutant embryonal carcinoma cells which fail to differentiate in response to retinoic acid. Proc. Natl. Acad. Sci. USA, 78: 1077–1081, 1981.

    Article  PubMed  CAS  Google Scholar 

  37. Williams-Ashmann, G.H., and Schenone, A. Methylglyoxal bis (Guanylhydrazone) as a potent inhibitor of mammalian and yeast S-adenoxylmethionine decarboxylase. Biochem. Biophys. Res. Commun., 46: 1–14, 1981.

    Google Scholar 

  38. Yuspa, S.H., Ben, T., and Steiner, P. Retinoic acid induced transglutaminase activity but inhibits cornification of cultured epidermal cells. J. Biol. Chem., 257: 9906–9912, 1982.

    PubMed  CAS  Google Scholar 

  39. Yuspa, S.H., Ben T., and Lichti, U. Regulation of epidermal transglutaminase activity and terminal differentiation by retinoids and phorbol esters. Cancer Res., 43: 5707–5712, 1983.

    PubMed  CAS  Google Scholar 

  40. Deluca, L.M. The direct involvement of vitamin A in glycosyl transfer reactions of mammalian membranes. Vitam. Horm., 35: 1–7, 1977.

    Article  CAS  Google Scholar 

  41. Chytil, F., and Ong. D. Cellular retinol-and retinoic acid-binding proteins in vitamin A action. Fed. Proc., 38: 2510–2516, 1979.

    PubMed  CAS  Google Scholar 

  42. Plet, A., Evain, D., and Anderson, W.B. Effect of retinoic acid treatment of F9 embryonal carcinoma cells on the activity and distribution of cyclic AMP-dependent protein kinase. J. Biol. Chem., 257: 889–893, 1982.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 The Humana Press Inc.

About this chapter

Cite this chapter

Schindler, J., Kelly, M. (1986). Retinoids, Polyamines and Teratocarcinoma Differentiation. In: Meyskens, F.L., Prasad, K.N. (eds) Vitamins and Cancer. Experimental Biology and Medicine, Vol. 10, vol 10. Humana Press. https://doi.org/10.1007/978-1-4612-5006-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5006-7_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-9395-8

  • Online ISBN: 978-1-4612-5006-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics