Skip to main content

Redevelopment of Fixation and Scanning Eye Movements Following the Loss of Foveal Function

  • Conference paper
Development of Order in the Visual System

Part of the book series: Cell and Developmental Biology of the Eye ((EYE))

Abstract

A critical part of visual perceptions, our ability to orient to a visual environment and quickly identify its most interesting attributes, depends upon our control of eye movements. Within a few seconds of confronting a page of text or a city street our oculomotor control system organizes and executes a series of saccades. The eye darts about the scene, bringing aspects of interest into the narrow field of the fovea for the resolution of detail. In this manner, our oculomotor system paints a global perception of a visual scene or transmits a message from the printed page to the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baloh, R.W., V. Honrubia and A. Sills. 1977. Eye-tracking and optokinetic nystagmus. Ann Otol, 86, 108–114.

    CAS  Google Scholar 

  • Becker, W. and H.M. Klein. 1973. Accuracy of saccadic eye movements and maintenance of eccentric eye position in the dark. Vision Res., 13, 1021–1034.

    Article  PubMed  CAS  Google Scholar 

  • Becker, W., W.M. King A. Fuchs R. Jürgens G. Johanson and H. Kornhuber. 1981. Accuracy of goal-directed saccades and mechanisms of error correction. In: Progress in Oculomotor Research. A. F. Fuchs and W. Becker (Eds.), Elsevier, North-Holland, 29–38.

    Google Scholar 

  • Berthoz, A., 1981. Discussion summary (Metrics and Models of Saccadic Eye Movements). In: Progress in Oculomotor Research. A. F. Fuchs and W. Becker (Eds.), Elsevier, North-Holland, 53–56.

    Google Scholar 

  • Collewijn, H., F. van der Mark and T.C. Jansen. 1975. Precise recording of human eye movements. Vision Research, 15, 447–450.

    Article  PubMed  CAS  Google Scholar 

  • Collewijn, H., 1977. Eye and head movements in the freely moving rabbit. J. of Physiol. (Lond.), 266, 471–498.

    CAS  Google Scholar 

  • Dobson, V., 1983. Preferential looking measures of visual acuity in infants and young children. In: Molecular and Cellular Basis of Visual Acuity. S. R. Hilfer and J.B. Sheffield (Eds). Springer-Verlag, New York, 151–172.

    Google Scholar 

  • Easter, S.S., P.R. Jr. Johns and D.R. Hechenlively. 1974. Horizontal compensatory eye movements in the goldfish ( Crarassius auratus ): I. The normal animal. J. Comp. Physiol., 92, 23–35.

    Google Scholar 

  • Meienberg, O., W. Zangemeister M. Rosenberg W.F. Hoyte and L. Stark. 1981. Saccadic eye movement strategies in patients with homonymous hemianopia. Ann. of Neur., 9, 538–544.

    Google Scholar 

  • Nachmias, J., 1959. Two-dimensional motion of the retinal image during monocular fixation. J. Opt. Soc. Am., 49, 901–908.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, D.A., and D.s. Zee. 1981. Theoretical considerations of the function and circuitry of various rapid eye movements. In: Progress in Oculomotor Research. A. F. Fuchs and W. Becker (Eds.), Elsevier, North-Holland, 3–10.

    Google Scholar 

  • Robinson, D.A., 1973. Models of saccadic eye movement control system. Kybernetik 14, 71–83.

    Article  PubMed  CAS  Google Scholar 

  • Romayanda, M., S.W. Wong I.H. Elzeneiny and G.H. Chan. 1982, Prismatic scanning method for improving visual acuity in patients with low vision. Ophthalmol., 89, 937–945.

    Google Scholar 

  • Roucoux, A., M. Crommelinck and D. Guitton. 1981. The role of superior colliculus in the generation of gaze shift. In: Progress in Oculomotor Research. A. F. Fuchs and W. Becker (Eds.), Elsevier, North-Holland, 129–136.

    Google Scholar 

  • Roucoux, A., M. Crommelinck, J.M. Guerit and M. Meulders. 1981. Two modes of eye head coordination and the role of the vestibulo-ocular reflex in these two strategies. In: Progress in Oculomotor Research. A. F. Fuchs and W. Becker (Eds.), Elsevier, North Holland, 309–318.

    Google Scholar 

  • Roucoux, A., C. Culee and M. Roucoux. 1983. Development of fixation and pursuit eye movements in human infants. Behav. Brain. Res. 10, 133–139.

    Article  PubMed  CAS  Google Scholar 

  • Schiller, P.H., and F. Koerner. 1971. Discharge characteristics of single units in the superior colliculus of the alert Rhesus monkey. J. neurophysiol. 34, 920–936.

    PubMed  CAS  Google Scholar 

  • Skavenski, A.A., and R.M. Steinman. 1968. Control of eye position in the dark. Vision Res., 10, 193–203.

    Article  Google Scholar 

  • Sparks, D.L., and L.E. Mays. 1981. The role of monkey superior colliculus in the control of saccadic eye movements: A current perspective. In: Progress in Oculomotor Research. A.F. Fuchs and W. Becker (Eds.), Elsevier, North-Holland, 137–144.

    Google Scholar 

  • Sparks, D.L., and L.E. Mays. 1983. Spatial localization of saccade targets. I. Compensation for stimulus induced purturbations in eye position. J. Neurophysiol. 49, 45–63.

    Google Scholar 

  • Sparks, D.L., and J.D. Porter. 1983. Spatial localization of saccade targets. II. Activity of superior colliculus neurons preceding compensatory saccades. J. Neurophysiol. 49, 64–74

    Google Scholar 

  • Traccis, S., L.A. Abel and L.F. Dell’Osso. 1984. Audio-ocular response: saccadic programming. Aviation Space Env Med, 55, 734–739.

    Google Scholar 

  • Van der Steen, J., and H. Collewijn. 1984. Ocular stability in the horizontal, frontal and sagittal planes in the rabbit. Exp. Brain Res. 56, 263–274.

    Article  PubMed  Google Scholar 

  • Vaughan, J., 1983. Saccadic reaction time in visual search. In: Eye Movements in Reading: Perceptual and Language Processes. K. Rayner (Ed). Academic Press, New York, 397–409.

    Google Scholar 

  • Whittaker, S.G., and G. Eaholtz. 1982. Learning patterns of eye motion for foveal pursuit. Vision Research. 23, 393–397.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this paper

Cite this paper

Whittaker, S.G., Cummings, R.W. (1986). Redevelopment of Fixation and Scanning Eye Movements Following the Loss of Foveal Function. In: Hilfer, S.R., Sheffield, J.B. (eds) Development of Order in the Visual System. Cell and Developmental Biology of the Eye. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4914-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4914-6_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9358-3

  • Online ISBN: 978-1-4612-4914-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics