Skip to main content

In-Vivo Measurement of Regional Strains in Myocardium

  • Chapter
Frontiers in Biomechanics

Abstract

The motion of the heart wall and its relationship to cardiac function have been the subject of intensive investigation for many years. While large rigid body motions (translations and rotations) have been observed in myocardium, it is the relative motion ( the deformation or strain) that may best be associated with the muscle’s contractile abilities. These strains accompany the large internal stresses and forces that react against the blood in order to raise its pressure and eject it from the chamber. During contraction, the normal left ventricular wall undergoes large and complex patterns of deformation that have been partly characterized by both global and local dimensional measurements. The motion of the left ventricle is often identified with the shape changes of an axisymmetric membrane or shell. Thus, early studies in cardiac mechanics focused on variations in global cardiac dimensions such as chamber volumes and areas, major and minor semi-axes, and circumferential shortening and shortening velocities as measured by changes in ventricular radius (Rushmer et al, 1956; Hawthorne, 1961; Mitchell et al, 1969; Rankin et al, 1976).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Badke, F.R., and Covell, J.W. 1979. Circ. Res. 45: 420–428.

    Google Scholar 

  • Borg, T.K., and Caulfield, J.B. 1981. Fed. Proc. 40: 2037–2041.

    Google Scholar 

  • Carew, T.E., and Covell, J.W. 1978. Am. J. Cardiol. 42: 82–88.

    Article  Google Scholar 

  • Dieudonne, J.M. 1969b. J. Physiol. ( Paris ) 61: 305–330.

    Google Scholar 

  • Edwards, C.H., Rankin, J.S., McHale, P.A., Ling, D., and Anderson, R.W. 1981. Am. J. Physiol 240: H413–H420.

    Google Scholar 

  • Feigl, E.O., and Fry, D.L. 1964a. Circ. Res. 14: 536–540.

    Google Scholar 

  • Feigl, E.O., and Fry, D.L. 1964b. Circ. Res. 14: 541–545.

    Google Scholar 

  • Fenton, T.R., Klassen, G.A., and Outerbridge, J.S. 1976. Intern. Conf. Med. Biol. Eng. 714–715.

    Google Scholar 

  • Fenton, T.R., Cherry, J.M., and Klassen, G.A. 1978. Am. J. Physiol. 235: H523–H530.

    Google Scholar 

  • Flanders, H. 1963. Differential forms with applications to the physical sciences. Academic Press, New York.

    MATH  Google Scholar 

  • Freeman, G., LeWinter, M.M., Engler, R.E., and Covell, J.W. 1985. Circ. Res. 56: 31–39.

    Google Scholar 

  • Fung, Y.C. 1965. Foundations of solid mechanics. Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Fung, Y.C. 1967. Am. J. Physiol. 213: 1532–1544.

    Google Scholar 

  • Gallagher, K.P., Kumada, T., Koziol, J.A., McKown, M.D., Kemper, W.S., and Ross, J.Jr. 1980. Circulation 62: 1266–1274.

    Google Scholar 

  • Gallagher, K.P., Osakada, G., Hess, O.M., Koziol, J.A., Kemper, W.S., and Ross, J.Jr. 1982a. Circ. Res. 50: 352–359.

    Google Scholar 

  • Gallagher, K.P., Osakada, G., Matsuzaki, M., Kemper, W.S., and Ross, J.Jr. 1982b. Am. J. Physiol. 12 (5): H698–H707.

    Google Scholar 

  • Hawthorne, E.W. 1961. Circ. Res. 9: 110–119.

    Google Scholar 

  • Hess, O.M., Osakada, G., Lavelle, J.F., Gallagher, K.P., Kemper, W.S., and Ross, J.Jr. 1983. Circ. Res. 52: 387–400.

    Google Scholar 

  • Ingels, N.B., Jr., Daughters, G.T.II, and Davies, S.R. 1971. J. Biomech. 4: 541–550.

    Article  Google Scholar 

  • Ingels, N.B., Jr., Daughters, G.T.II, Stinson, E.B., and Alderman, E.L. 1975. Circulation 52: 859–867.

    Google Scholar 

  • Alderman, E.L. 1981. J. Biomech. 14 (4): 221–233.

    Article  Google Scholar 

  • Lew, W., and LeWinter, M.M. 1983. Am. J. Physiol. 245: H741–H748.

    Google Scholar 

  • Lew, W., and LeWinter, M.M. 1984. ( Submitted for publication).

    Google Scholar 

  • LeWinter, M.M., Kent, R.S., Kroener, J.M., Carew, T.E., and Covell, J.W. 1975. Circ. Res. 37: 191–199.

    Google Scholar 

  • LeWinter, M.M., Engler, R.L., and Karliner, J.S. 1980. Am. J. Physiol. 238: H126–H133.

    Google Scholar 

  • McClain, P.E. 1974. Biol. Chem. 249: 2303–2311.

    Google Scholar 

  • Medugorac, I. 1982. Basic Res. Cardiol. 77: 589–598.

    Article  Google Scholar 

  • Meier, G.D., Ziskin, M.C., and Bove, A.A. 1982. Am. J. Physiol. 243: H1–H11.

    Google Scholar 

  • Meier, G.D., Ziskin, M.C., Santamore, W.P., and Bove, A.A. 1980. IEEE Trans.Biomed. Eng. 27: 319–329.

    Article  Google Scholar 

  • Mitchell, J.H., Wildenthal, K., and Mullins, C.B. 1969. Fed. Proc. 28 (4): 1334–1343.

    Google Scholar 

  • Myers, J.H., Stirling, M.C., Choy, M., and Gallagher, K.P. 1984. Proc. 37th ACEMB, Los Angeles.

    Google Scholar 

  • Osakada, G., Sasayama, S., Kawai, C., Hirakawa, A., Kemper, W.S., Franklin, D., and Ross, J., Jr. 1980. Circ. Res. 47: 173–181.

    Google Scholar 

  • Osakada, G., Sasayama, S., Kawai, C., Hirakawa, A., Kemper, W.S., Franklin, D., and Ross, J., Jr. 1980. Circ. Res. 47: 173–181.

    Google Scholar 

  • Prinzen, F.W., Arts, T., Van Der Vusse, G.J., and Reneman, R.S. 1984. J. Biomech. 17: 801–811.

    Article  Google Scholar 

  • Rankin, J.S., McHale, P.A., Arentger, L.E., Liey, D., Greenfield, J.C., and Anderson, R.W. 1976. Circ. Res. 39: 304–313.

    Google Scholar 

  • Ross, J., Jr., Sonnenblick, E.H., Covell, J.W., Kaiser, G.A., and Spiro, D. 1967. Circ. Res. 21: 409–421.

    Google Scholar 

  • Rushmer, R.F., Franklin, D. L., and Ellis, R.M. 1956. Circ. Res. 4: 684–688.

    Google Scholar 

  • Sasayama, S., Franklin, D.L., Ross, J., Jr. 1977. Am. J. Physiol. 232: H418–H425.

    Google Scholar 

  • Sasayama, S., Gallagher, K.P., Kemper, W.S., Franklin, D.L., and Ross, J., Jr. 1981. Am. J. Physiol. 240: H293–H299.

    Google Scholar 

  • Streeter, D.D. 1979. Pages 61–112 in Handbook of physiology, section 2: The cardiovascular system, vol 1: the heart, R.M. Berne, ed. Bethesda, Maryland, Waverly Press.

    Google Scholar 

  • Streeter, D.D., Spotnitz, H.M., Patel, D.J., Ross, J., Jr., and Sonnenblick, E.H. 1969. Circ. Res. 24: 339–347.

    Google Scholar 

  • Tennant, R., and Wiggers, C.J. 1935. Am. J. Physiol. 112: 351–361.

    Google Scholar 

  • Theroux, P., Ross, J., Jr., Franklin, D.L., Covell, J.W., Bloor, C.M., and Sasayama, S. 1977. Circ. Res. 4: 158–165.

    Google Scholar 

  • Torrent-Guasp, F. 1973. The cardiac muscle. Juan March Foundation, Barcelona, Spain.

    Google Scholar 

  • Truesdell, C. 1966. The elements of continuum mechanics. Springer-Verlag, New York. Waldman, L.K., Fung, Y.C., and Covell, J.W. 1985. Circ. Res. 57: 152–163.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Waldman, L.K. (1986). In-Vivo Measurement of Regional Strains in Myocardium. In: Schmid-Schönbein, G.W., Woo, S.LY., Zweifach, B.W. (eds) Frontiers in Biomechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4866-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4866-8_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9337-8

  • Online ISBN: 978-1-4612-4866-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics